1,501 research outputs found

    Choice of method of place cell classification determines the population of cells identified

    Get PDF
    Place cells, spatially responsive hippocampal cells, provide the neural substrate supporting navigation and spatial memory. Historically most studies of these neurons have used electrophysiological recordings from implanted electrodes but optical methods, measuring intracellular calcium, are becoming increasingly common. Several methods have been proposed as a means to identify place cells based on their calcium activity but there is no common standard and it is unclear how reliable different approaches are. Here we tested four methods that have previously been applied to two-photon hippocampal imaging or electrophysiological data, using both model datasets and real imaging data. These methods use different parameters to identify place cells, including the peak activity in the place field, compared to other locations (the Peak method); the stability of cells’ activity over repeated traversals of an environment (Stability method); a combination of these parameters with the size of the place field (Combination method); and the spatial information held by the cells (Information method). The methods performed differently from each other on both model and real data. In real datasets, vastly different numbers of place cells were identified using the four methods, with little overlap between the populations identified as place cells. Therefore, choice of place cell detection method dramatically affects the number and properties of identified cells. Ultimately, we recommend the Peak method be used in future studies to identify place cell populations, as this method is robust to moderate variations in place field within a session, and makes no inherent assumptions about the spatial information in place fields, unless there is an explicit theoretical reason for detecting cells with more narrowly defined properties

    Gradual not sudden change: multiple sites of functional transition across the microvascular bed

    Get PDF
    In understanding the role of the neurovascular unit as both a biomarker and target for disease interventions, it is vital to appreciate how the function of different components of this unit change along the vascular tree. The cells of the neurovascular unit together perform an array of vital functions, protecting the brain from circulating toxins and infection, while providing nutrients and clearing away waste products. To do so, the brain’s microvasculature dilates to direct energy substrates to active neurons, regulates access to circulating immune cells, and promotes angiogenesis in response to decreased blood supply, as well as pulsating to help clear waste products and maintain the oxygen supply. Different parts of the cerebrovascular tree contribute differently to various aspects of these functions, and previously, it has been assumed that there are discrete types of vessel along the vascular network that mediate different functions. Another option, however, is that the multiple transitions in function that occur across the vascular network do so at many locations, such that vascular function changes gradually, rather than in sharp steps between clearly distinct vessel types. Here, by reference to new data as well as by reviewing historical and recent literature, we argue that this latter scenario is likely the case and that vascular function gradually changes across the network without clear transition points between arteriole, precapillary arteriole and capillary. This is because classically localized functions are in fact performed by wide swathes of the vasculature, and different functional markers start and stop being expressed at different points along the vascular tree. Furthermore, vascular branch points show alterations in their mural cell morphology that suggest functional specializations irrespective of their position within the network. Together this work emphasizes the need for studies to consider where transitions of different functions occur, and the importance of defining these locations, in order to better understand the vascular network and how to target it to treat disease

    Emotion Recognition in Low-Resource Settings:An Evaluation of Automatic Feature Selection Methods

    Get PDF
    Research in automatic affect recognition has seldom addressed the issue of computational resource utilization. With the advent of ambient intelligence technology which employs a variety of low-power, resource-constrained devices, this issue is increasingly gaining interest. This is especially the case in the context of health and elderly care technologies, where interventions may rely on monitoring of emotional status to provide support or alert carers as appropriate. This paper focuses on emotion recognition from speech data, in settings where it is desirable to minimize memory and computational requirements. Reducing the number of features for inductive inference is a route towards this goal. In this study, we evaluate three different state-of-the-art feature selection methods: Infinite Latent Feature Selection (ILFS), ReliefF and Fisher (generalized Fisher score), and compare them to our recently proposed feature selection method named `Active Feature Selection' (AFS). The evaluation is performed on three emotion recognition data sets (EmoDB, SAVEE and EMOVO) using two standard acoustic paralinguistic feature sets (i.e. eGeMAPs and emobase). The results show that similar or better accuracy can be achieved using subsets of features substantially smaller than the entire feature set. A machine learning model trained on a smaller feature set will reduce the memory and computational resources of an emotion recognition system which can result in lowering the barriers for use of health monitoring technology
    • …
    corecore