544 research outputs found

    Using Social Media to Promote STEM Education: Matching College Students with Role Models

    Full text link
    STEM (Science, Technology, Engineering, and Mathematics) fields have become increasingly central to U.S. economic competitiveness and growth. The shortage in the STEM workforce has brought promoting STEM education upfront. The rapid growth of social media usage provides a unique opportunity to predict users' real-life identities and interests from online texts and photos. In this paper, we propose an innovative approach by leveraging social media to promote STEM education: matching Twitter college student users with diverse LinkedIn STEM professionals using a ranking algorithm based on the similarities of their demographics and interests. We share the belief that increasing STEM presence in the form of introducing career role models who share similar interests and demographics will inspire students to develop interests in STEM related fields and emulate their models. Our evaluation on 2,000 real college students demonstrated the accuracy of our ranking algorithm. We also design a novel implementation that recommends matched role models to the students.Comment: 16 pages, 8 figures, accepted by ECML/PKDD 2016, Industrial Trac

    Anarchy and Leptogenesis

    Full text link
    We study if leptogenesis works successfully together with the neutrino mass anarchy hypothesis. We find that the predicted neutrino mass spectrum is sensitive to the reheating temperature or the inflaton mass, while the distributions of the neutrino mixing angles and CP violation phases remain intact as determined by the invariant Haar measure of U(3). In the case of thermal leptogenesis, the light neutrino mass distribution agrees well with the observations if the reheating temperature is O(10^{9-11}) GeV. The mass spectrum of the right-handed neutrinos and the neutrino Yukawa matrix exhibit a certain pattern, as a result of the competition between random matrices with elements of order unity and the wash-out effect. Non-thermal leptogenesis is consistent with observation only if the inflaton mass is larger than or comparable to the typical right-handed neutrino mass scale. Cosmological implications are discussed in connection with the 125GeV Higgs boson mass.Comment: 29 pages, 6 figures. v2: figures and references added. v3: published in JHE

    On the complexity of the Saccharomyces bayanus taxon: hybridization and potential hybrid speciation

    Get PDF
    Although the genus Saccharomyces has been thoroughly studied, some species in the genus has not yet been accurately resolved; an example is S. bayanus, a taxon that includes genetically diverse lineages of pure and hybrid strains. This diversity makes the assignation and classification of strains belonging to this species unclear and controversial. They have been subdivided by some authors into two varieties (bayanus and uvarum), which have been raised to the species level by others. In this work, we evaluate the complexity of 46 different strains included in the S. bayanus taxon by means of PCR-RFLP analysis and by sequencing of 34 gene regions and one mitochondrial gene. Using the sequence data, and based on the S. bayanus var. bayanus reference strain NBRC 1948, a hypothetical pure S. bayanus was reconstructed for these genes that showed alleles with similarity values lower than 97% with the S. bayanus var. uvarum strain CBS 7001, and of 99¿100% with the non S. cerevisiae portion in S. pastorianus Weihenstephan 34/70 and with the new species S. eubayanus. Among the S. bayanus strains under study, different levels of homozygosity, hybridization and introgression were found; however, no pure S. bayanus var. bayanus strain was identified. These S. bayanus hybrids can be classified into two types: homozygous (type I) and heterozygous hybrids (type II), indicating that they have been originated by different hybridization processes. Therefore, a putative evolutionary scenario involving two different hybridization events between a S. bayanus var. uvarum and unknown European S. eubayanus-like strains can be postulated to explain the genomic diversity observed in our S. bayanus var. bayanus strains

    New Insights into the Role of MHC Diversity in Devil Facial Tumour Disease

    Get PDF
    Devil facial tumour disease (DFTD) is a fatal contagious cancer that has decimated Tasmanian devil populations. The tumour has spread without invoking immune responses, possibly due to low levels of Major Histocompatibility Complex (MHC) diversity in Tasmanian devils. Animals from a region in north-western Tasmania have lower infection rates than those in the east of the state. This area is a genetic transition zone between sub-populations, with individuals from north-western Tasmania displaying greater diversity than eastern devils at MHC genes, primarily through MHC class I gene copy number variation. Here we test the hypothesis that animals that remain healthy and tumour free show predictable differences at MHC loci compared to animals that develop the disease

    Glucanocellulosic ethanol: The undiscovered biofuel potential in energy crops and marine biomass

    Get PDF
    Converting biomass to biofuels is a key strategy in substituting fossil fuels to mitigate climate change. Conventional strategies to convert lignocellulosic biomass to ethanol address the fermentation of cellulose-derived glucose. Here we used super-resolution fluorescence microscopy to uncover the nanoscale structure of cell walls in the energy crops maize and Miscanthus where the typical polymer cellulose forms an unconventional layered architecture with the atypical (1, 3)-β-glucan polymer callose. This raised the question about an unused potential of (1, 3)-β-glucan in the fermentation of lignocellulosic biomass. Engineering biomass conversion for optimized (1, 3)-β-glucan utilization, we increased the ethanol yield from both energy crops. The generation of transgenic Miscanthus lines with an elevated (1, 3)-β-glucan content further increased ethanol yield providing a new strategy in energy crop breeding. Applying the (1, 3)-β-glucan-optimized conversion method on marine biomass from brown macroalgae with a naturally high (1, 3)-β-glucan content, we not only substantially increased ethanol yield but also demonstrated an effective co-fermentation of plant and marine biomass. This opens new perspectives in combining different kinds of feedstock for sustainable and efficient biofuel production, especially in coastal regions

    Radiative contribution to neutrino masses and mixing in μν\mu\nuSSM

    Full text link
    In an extension of the minimal supersymmetric standard model (popularly known as the μν\mu\nuSSM), three right handed neutrino superfields are introduced to solve the μ\mu-problem and to accommodate the non-vanishing neutrino masses and mixing. Neutrino masses at the tree level are generated through RR-parity violation and seesaw mechanism. We have analyzed the full effect of one-loop contributions to the neutrino mass matrix. We show that the current three flavour global neutrino data can be accommodated in the μν\mu\nuSSM, for both the tree level and one-loop corrected analyses. We find that it is relatively easier to accommodate the normal hierarchical mass pattern compared to the inverted hierarchical or quasi-degenerate case, when one-loop corrections are included.Comment: 51 pages, 14 figures (58 .eps files), expanded introduction, other minor changes, references adde

    Telomeric expression sites are highly conserved in trypanosoma brucei

    Get PDF
    Subtelomeric regions are often under-represented in genome sequences of eukaryotes. One of the best known examples of the use of telomere proximity for adaptive purposes are the bloodstream expression sites (BESs) of the African trypanosome Trypanosoma brucei. To enhance our understanding of BES structure and function in host adaptation and immune evasion, the BES repertoire from the Lister 427 strain of T. brucei were independently tagged and sequenced. BESs are polymorphic in size and structure but reveal a surprisingly conserved architecture in the context of extensive recombination. Very small BESs do exist and many functioning BESs do not contain the full complement of expression site associated genes (ESAGs). The consequences of duplicated or missing ESAGs, including ESAG9, a newly named ESAG12, and additional variant surface glycoprotein genes (VSGs) were evaluated by functional assays after BESs were tagged with a drug-resistance gene. Phylogenetic analysis of constituent ESAG families suggests that BESs are sequence mosaics and that extensive recombination has shaped the evolution of the BES repertoire. This work opens important perspectives in understanding the molecular mechanisms of antigenic variation, a widely used strategy for immune evasion in pathogens, and telomere biology

    Molecular characterisation of protist parasites in human-habituated mountain gorillas (Gorilla beringei beringei), humans and livestock, from Bwindi impenetrable National Park, Uganda

    Get PDF
    Over 60 % of human emerging infectious diseases are zoonotic, and there is growing evidence of the zooanthroponotic transmission of diseases from humans to livestock and wildlife species, with major implications for public health, economics, and conservation. Zooanthroponoses are of relevance to critically endangered species; amongst these is the mountain gorilla (Gorilla beringei beringei) of Uganda. Here, we assess the occurrence of Cryptosporidium, Cyclospora, Giardia, and Entamoeba infecting mountain gorillas in the Bwindi Impenetrable National Park (BINP), Uganda, using molecular methods. We also assess the occurrence of these parasites in humans and livestock species living in overlapping/adjacent geographical regions

    Allorecognition in the Tasmanian Devil (Sarcophilus harrisii), an Endangered Marsupial Species with Limited Genetic Diversity

    Get PDF
    Tasmanian devils (Sarcophilus harrisii) are on the verge of extinction due to a transmissible cancer, devil facial tumour disease (DFTD). This tumour is an allograft that is transmitted between individuals without immune recognition of the tumour cells. The mechanism to explain this lack of immune recognition and acceptance is not well understood. It has been hypothesized that lack of genetic diversity at the Major Histocompatibility Complex (MHC) allowed the tumour cells to grow in genetically similar hosts without evoking an immune response to alloantigens. We conducted mixed lymphocyte reactions and skin grafts to measure functional MHC diversity in the Tasmanian devil population. The limited MHC diversity was sufficient to produce measurable mixed lymphocyte reactions. There was a wide range of responses, from low or no reaction to relatively strong responses. The highest responses occurred when lymphocytes from devils from the east of Tasmania were mixed with lymphocytes from devils from the west of Tasmania. All of the five successful skin allografts were rejected within 14 days after surgery, even though little or no MHC I and II mismatches were found. Extensive T-cell infiltration characterised the immune rejection. We conclude that Tasmanian devils are capable of allogeneic rejection. Consequently, a lack of functional allorecognition mechanisms in the devil population does not explain the transmission of a contagious cancer
    corecore