7,897 research outputs found

    Football match spectator sound exposure and effect on hearing: A pretest–post-test study

    Get PDF
    Objectives. To determine (i) noise exposure levels of spectatorsat a FIFA 2010 designated training stadium during a premier soccer league match; and (ii) changes in auditory functioning after the match.Methods. This was a one-group pretest–post-test design of football spectators attending a premier soccer league match at a designated FIFA 2010 training stadium in Gauteng, South Africa. Individual spectator noise exposure for the duration of the football match and post-match changes in hearing thresholds were measured with pure-tone audiometry, and cochlear functioning was measured with distortion product otoacoustic emissions (DPOAEs).Results. The average sound exposure level during the match was 100.5 LAeq (dBA), with peak intensities averaging 140.4 dB(C). A significant (p=0.005) deterioration of post-match hearing thresholds was evident at 2 000 Hz, and post-match DPOAE amplitudes were significantly reduced at 1 266, 3 163 and 5 063 Hz (p=0.011, 0.019, 0.013, respectively).Conclusions. Exposure levels exceeded limits of permissibleaverage and peak sound levels. Significant changes in postmatchhearing thresholds and cochlear responsiveness highlight the possible risk for noise-induced hearing loss. Public awareness and personal hearing protection should be prioritised as preventive measures

    Regulation of freshwater use to restore ecosystems resilience

    Get PDF
    Concern about the impacts of water regulation upon the aquatic environment has led to increasingly stringent regulatory constraints on the quantity and timing of freshwater withdrawals. For the time being these regulatory constraints tend to be articulated in terms of limits upon withdrawals, partly because of limited knowledge of the condition and resilience of the aquatic ecosystems. A more sophisticated approach to regulation would be more directly related to indicators of ecological condition. Moreover, it would consider ecosystem response to climatic events not present in the historical record. In this paper we use a combination of empirical evidence of ecosystem condition with simulation to propose and test reductions to regulatory limits on river water withdrawals and downstream minimum flow requirements. The study uses multi-level linear regression to relate the Lotic-invertebrate Index for Flow Evaluation (LIFE) to antecedent flow statistics observed in the Lee catchment, England. The selected flow statistics included extreme low (Q90) and high (Q10) flows in the summer season (April-Sept), and the median flows observed in the winter season (Oct-Mar). The derived model is used to forecast the response of the macroinvertebrate index to future flow scenarios and demand forecasts, incorporating the uncertainties in ecosystem response. Simulation is used to evaluate the sensitivity of the indices to different regulatory limits. Results indicate that macroinvertebrate health will worsen under 21st Century climate conditions, and that the existing regulation policy must be modified to maintain historically observed LIFE scores into the future. The framework demonstrates how regulations could move from precautionary limits on withdrawals to an approach based on observations, forecasting and simulation, allowing planners to refine the trade-offs between river health and reliable water supply in the face of uncertainty

    Selecting Indicators and Optimizing Decision Rules for Long-Term Water Resources Planning

    Get PDF
    Decision rules provide an intuitive framework for water resources planning. Having adopted a rule-based plan, decision makers can monitor critical variables to trigger timely adaptation actions when the variables pass their predetermined thresholds. However, establishing a strategy that is comprised of a set of decision rules raises methodological challenges: (i) to identify observable indicators that provide reliable information about current and future change, (ii) to choose suitable statistics to characterize nonstationary time series that are germane to system performance, and (iii) to optimize threshold levels that trigger interventions. We propose a methodology that addresses these methodological challenges whilst explicitly balancing expected risks of water shortages with the costs of intervention in the water supply system. The four-step framework uses a multiobjective evolutionary algorithm to search for and to identify the combinations of indicator-informed decision rules that govern if, when, and what supply options should be included in the water resource system. The rule-based strategies are dynamically tested against an extensive ensemble of future climate and demand scenarios to examine the trade-offs between strategy cost and level of service. The framework is applied to the London water system (England) using regional climate simulations to identify strategic rules for a 60-year planning period. The results demonstrate the utility of the framework, identifying observable indicators and decision thresholds that are used in optimal rule-based planning strategies. In key areas of the solution space, rule-based strategies reduce expected restriction costs on average by 13.1%, and as much as 24.1%, for a given intervention cost

    The resilience of inter-basin transfers to severe droughts with changing spatial characteristics

    Get PDF
    Faced with the prospect of climate change and growing demands for water, water resources managers are increasingly examining the potential for inter-basin water transfers to alleviate water shortages. However, water transfers are vulnerable to large-scale spatially coherent droughts which may lead to water shortages in neighboring river basins at the same time. Under climate change, increasingly severe droughts are also expected to have greater spatial extent. We have integrated climate, hydrological and water resource modeling to explore the resilience of new transfer schemes between two neighboring water companies in Southern England. An extended historical record of river flows and large ensemble of future flows derived from climate simulations were used to explore the effects of spatial and temporal drought variability. The analysis examines meteorological, hydrological and water resource drought events and how the spatial characteristics of these droughts may change with different transfer arrangements. Results indicate that all drought types examined are expected to increase in frequency and intensity throughout the twenty-first century, but a new transfer has the capability to increase the resilience of water supplies. The analysis also highlights the importance of testing new water infrastructure against drought events that are more extreme and have different spatial patterns to those in historical records, demonstrating the value of scenario-based approaches to adaptive water resource planning

    A novel function for the Caenorhabditis elegans torsin OOC-5 in nucleoporin localization and nuclear import.

    Get PDF
    Torsin proteins are AAA+ ATPases that localize to the endoplasmic reticular/nuclear envelope (ER/NE) lumen. A mutation that markedly impairs torsinA function causes the CNS disorder DYT1 dystonia. Abnormalities of NE membranes have been linked to torsinA loss of function and the pathogenesis of DYT1 dystonia, leading us to investigate the role of the Caenorhabditis elegans torsinA homologue OOC-5 at the NE. We report a novel role for torsin in nuclear pore biology. In ooc-5-mutant germ cell nuclei, nucleoporins (Nups) were mislocalized in large plaques beginning at meiotic entry and persisted throughout meiosis. Moreover, the KASH protein ZYG-12 was mislocalized in ooc-5 gonads. Nups were mislocalized in adult intestinal nuclei and in embryos from mutant mothers. EM analysis revealed vesicle-like structures in the perinuclear space of intestinal and germ cell nuclei, similar to defects reported in torsin-mutant flies and mice. Consistent with a functional disruption of Nups, ooc-5-mutant embryos displayed impaired nuclear import kinetics, although the nuclear pore-size exclusion barrier was maintained. Our data are the first to demonstrate a requirement for a torsin for normal Nup localization and function and suggest that these functions are likely conserved

    Coordinated circadian timing through the integration of local inputs in Arabidopsis thaliana.

    Get PDF
    Individual plant cells have a genetic circuit, the circadian clock, that times key processes to the day-night cycle. These clocks are aligned to the day-night cycle by multiple environmental signals that vary across the plant. How does the plant integrate clock rhythms, both within and between organs, to ensure coordinated timing? To address this question, we examined the clock at the sub-tissue level across Arabidopsis thaliana seedlings under multiple environmental conditions and genetic backgrounds. Our results show that the clock runs at different speeds (periods) in each organ, which causes the clock to peak at different times across the plant in both constant environmental conditions and light-dark (LD) cycles. Closer examination reveals that spatial waves of clock gene expression propagate both within and between organs. Using a combination of modeling and experiment, we reveal that these spatial waves are the result of the period differences between organs and local coupling, rather than long-distance signaling. With further experiments we show that the endogenous period differences, and thus the spatial waves, can be generated by the organ specificity of inputs into the clock. We demonstrate this by modulating periods using light and metabolic signals, as well as with genetic perturbations. Our results reveal that plant clocks can be set locally by organ-specific inputs but coordinated globally via spatial waves of clock gene expression

    GeneMill: A 21st century platform for innovation

    Get PDF
    GeneMill officially launched on 4th February 2016 and is an open access academic facility located at The University of Liverpool that has been established for the high-throughput construction and testing of synthetic DNA constructs. GeneMill provides end-to-end design, construction and phenotypic characterization of small to large gene constructs or genetic circuits/pathways for academic and industrial applications. Thus, GeneMill is equipping the scientific community with easy access to the validated tools required to explore the possibilities of Synthetic Biology

    Ascaroside Expression in Caenorhabditis elegans Is Strongly Dependent on Diet and Developmental Stage

    Get PDF
    Background: The ascarosides form a family of small molecules that have been isolated from cultures of the nematode Caenorhabditis elegans. They are often referred to as “dauer pheromones” because most of them induce formation of long-lived and highly stress resistant dauer larvae. More recent studies have shown that ascarosides serve additional functions as social signals and mating pheromones. Thus, ascarosides have multiple functions. Until now, it has been generally assumed that ascarosides are constitutively expressed during nematode development. Methodology/Principal Findings: Cultures of C. elegans were developmentally synchronized on controlled diets. Ascarosides released into the media, as well as stored internally, were quantified by LC/MS. We found that ascaroside biosynthesis and release were strongly dependent on developmental stage and diet. The male attracting pheromone was verified to be a blend of at least four ascarosides, and peak production of the two most potent mating pheromone components, ascr#3 and asc#8 immediately preceded or coincided with the temporal window for mating. The concentration of ascr#2 increased under starvation conditions and peaked during dauer formation, strongly supporting ascr#2 as the main population density signal (dauer pheromone). After dauer formation, ascaroside production largely ceased and dauer larvae did not release any ascarosides. These findings show that both total ascaroside production and the relative proportions of individual ascarosides strongly correlate with these compounds' stage-specific biological functions. Conclusions/Significance: Ascaroside expression changes with development and environmental conditions. This is consistent with multiple functions of these signaling molecules. Knowledge of such differential regulation will make it possible to associate ascaroside production to gene expression profiles (transcript, protein or enzyme activity) and help to determine genetic pathways that control ascaroside biosynthesis. In conjunction with findings from previous studies, our results show that the pheromone system of C. elegans mimics that of insects in many ways, suggesting that pheromone signaling in C. elegans may exhibit functional homology also at the sensory level. In addition, our results provide a strong foundation for future behavioral modeling studies

    Causal Loop Analysis of coastal geomorphological systems

    Get PDF
    As geomorphologists embrace ever more sophisticated theoretical frameworks that shift from simple notions of evolution towards single steady equilibria to recognise the possibility of multiple response pathways and outcomes, morphodynamic modellers are facing the problem of how to keep track of an ever-greater number of system feedbacks. Within coastal geomorphology, capturing these feedbacks is critically important, especially as the focus of activity shifts from reductionist models founded on sediment transport fundamentals to more synthesist ones intended to resolve emergent behaviours at decadal to centennial scales. This paper addresses the challenge of mapping the feedback structure of processes controlling geomorphic system behaviour with reference to illustrative applications of Causal Loop Analysis at two study cases: (1) the erosion-accretion behaviour of graded (mixed) sediment beds, and (2) the local alongshore sediment fluxes of sand-rich shorelines. These case study examples are chosen on account of their central role in the quantitative modelling of geomorphological futures and as they illustrate different types of causation. Causal loop diagrams, a form of directed graph, are used to distil the feedback structure to reveal, in advance of more quantitative modelling, multi-response pathways and multiple outcomes. In the case of graded sediment bed, up to three different outcomes (no response, and two disequilibrium states) can be derived from a simple qualitative stability analysis. For the sand-rich local shoreline behaviour case, two fundamentally different responses of the shoreline (diffusive and anti-diffusive), triggered by small changes of the shoreline cross-shore position, can be inferred purely through analysis of the causal pathways. Explicit depiction of feedback-structure diagrams is beneficial when developing numerical models to explore coastal morphological futures. By explicitly mapping the feedbacks included and neglected within a model, the modeller can readily assess if critical feedback loops are included
    • …
    corecore