67,924 research outputs found

    Semiclassical energy formulas for power-law and log potentials in quantum mechanics

    Full text link
    We study a single particle which obeys non-relativistic quantum mechanics in R^N and has Hamiltonian H = -Delta + V(r), where V(r) = sgn(q)r^q. If N \geq 2, then q > -2, and if N = 1, then q > -1. The discrete eigenvalues E_{n\ell} may be represented exactly by the semiclassical expression E_{n\ell}(q) = min_{r>0}\{P_{n\ell}(q)^2/r^2+ V(r)}. The case q = 0 corresponds to V(r) = ln(r). By writing one power as a smooth transformation of another, and using envelope theory, it has earlier been proved that the P_{n\ell}(q) functions are monotone increasing. Recent refinements to the comparison theorem of QM in which comparison potentials can cross over, allow us to prove for n = 1 that Q(q)=Z(q)P(q) is monotone increasing, even though the factor Z(q)=(1+q/N)^{1/q} is monotone decreasing. Thus P(q) cannot increase too slowly. This result yields some sharper estimates for power-potential eigenvlaues at the bottom of each angular-momentum subspace.Comment: 20 pages, 5 figure

    Coulomb plus power-law potentials in quantum mechanics

    Full text link
    We study the discrete spectrum of the Hamiltonian H = -Delta + V(r) for the Coulomb plus power-law potential V(r)=-1/r+ beta sgn(q)r^q, where beta > 0, q > -2 and q \ne 0. We show by envelope theory that the discrete eigenvalues E_{n\ell} of H may be approximated by the semiclassical expression E_{n\ell}(q) \approx min_{r>0}\{1/r^2-1/(mu r)+ sgn(q) beta(nu r)^q}. Values of mu and nu are prescribed which yield upper and lower bounds. Accurate upper bounds are also obtained by use of a trial function of the form, psi(r)= r^{\ell+1}e^{-(xr)^{q}}. We give detailed results for V(r) = -1/r + beta r^q, q = 0.5, 1, 2 for n=1, \ell=0,1,2, along with comparison eigenvalues found by direct numerical methods.Comment: 11 pages, 3 figure

    Cryogenic thermocouple calibration tables

    Get PDF
    Thermocouple calibration standards are developed for low-temperature thermocouple materials. Thermovoltage, thermopower, and the thermopower derivative are presented in tabular and graphical form

    Spiked oscillators: exact solution

    Full text link
    A procedure to obtain the eigenenergies and eigenfunctions of a quantum spiked oscillator is presented. The originality of the method lies in an adequate use of asymptotic expansions of Wronskians of algebraic solutions of the Schroedinger equation. The procedure is applied to three familiar examples of spiked oscillators

    Application of satellite imagery to hydrologic modeling snowmelt runoff in the southern Sierra Nevada

    Get PDF
    There are no author-identified significant results in this report

    Asymptotic analysis of a system of algebraic equations arising in dislocation theory

    Get PDF
    The system of algebraic equations given by\ud \ud j=0,jinsgn(xixj)/xixja=1,i=1,2,n,x0=0,\sum_{j=0, j \neq i}^n sgn(x_i - x_j) / |x_i - x_j|^a = 1, i = 1, 2, \ldots n, x_0 = 0,\ud \ud appears in dislocation theory in models of dislocation pile-ups. Specifically, the case a = 1 corresponds to the simple situation where n dislocations are piled up against a locked dislocation, while the case a = 3 corresponds to n dislocation dipoles piled up against a locked dipole.\ud \ud We present a general analysis of systems of this type for a > 0 and n large. In the asymptotic limit n -> ∞, it becomes possible to replace the system of discrete equations with a continuum equation for the particle density. For 0 < a < 2, this takes the form of a singular integral equation, while for a > 2 it is a first-order differential equation. The critical case a = 2 requires special treatment but, up to corrections of logarithmic order, it also leads to a differential equation.\ud \ud The continuum approximation is only valid for i not too small nor too close to n. The boundary layers at either end of the pile-up are also analyzed, which requires matching between discrete and continuum approximations to the main problem

    Air motion determination by tracking humidity patterns in isentropic layers

    Get PDF
    Determining air motions by tracking humidity patterns in isentropic layers was investigated. Upper-air rawinsonde data from the NSSL network and from the AVE-II pilot experiment were used to simulate temperature and humidity profile data that will eventually be available from geosynchronous satellites. Polynomial surfaces that move with time were fitted to the mixing-ratio values of the different isentropic layers. The velocity components of the polynomial surfaces are part of the coefficients that are determined in order to give an optimum fitting of the data. In the mid-troposphere, the derived humidity motions were in good agreement with the winds measured by rawinsondes so long as there were few or no clouds and the lapse rate was relatively stable. In the lower troposphere, the humidity motions were unreliable primarily because of nonadiabatic processes and unstable lapse rates. In the upper troposphere, the humidity amounts were too low to be measured with sufficient accuracy to give reliable results. However, it appears that humidity motions could be used to provide mid-tropospheric wind data over large regions of the globe

    Semirelativistic stability of N-boson systems bound by 1/r pair potentials

    Full text link
    We analyze a system of self-gravitating identical bosons by means of a semirelativistic Hamiltonian comprising the relativistic kinetic energies of the involved particles and added (instantaneous) Newtonian gravitational pair potentials. With the help of an improved lower bound to the bottom of the spectrum of this Hamiltonian, we are able to enlarge the known region for relativistic stability for such boson systems against gravitational collapse and to sharpen the predictions for their maximum stable mass.Comment: 11 pages, considerably enlarged introduction and motivation, remainder of the paper unchange

    Cryogenic thermocouple tables

    Get PDF
    Cryogenic standardized thermocouple materials table

    General energy bounds for systems of bosons with soft cores

    Full text link
    We study a bound system of N identical bosons interacting by model pair potentials of the form V(r) = A sgn(p)r^p + B/r^2, A > 0, B >= 0. By using a variational trial function and the `equivalent 2-body method', we find explicit upper and lower bound formulas for the N-particle ground-state energy in arbitrary spatial dimensions d > 2 for the two cases p = 2 and p = -1. It is demonstrated that the upper bound can be systematically improved with the aid of a special large-N limit in collective field theory
    corecore