17 research outputs found
An interlaboratory proficiency test using metagenomic sequencing as a diagnostic tool for the detection of RNA viruses in swine fecal material
Metagenomic shotgun sequencing (mNGS) can serve as a generic molecular diagnostic tool. An mNGS proficiency test (PT) was performed in six European veterinary and public health laboratories to detect porcine astroviruses in fecal material and the extracted RNA. While different mNGS workflows for the generation of mNGS data were used in the different laboratories, the bioinformatic analysis was standardized using a metagenomic read classifier as well as read mapping to selected astroviral reference genomes to assess the semiquantitative representation of astrovirus species mixtures. All participants successfully identified and classified most of the viral reads to the two dominant species. The normalized read counts obtained by aligning reads to astrovirus reference genomes by Bowtie2 were in line with Kraken read classification counts. Moreover, participants performed well in terms of repeatability when the fecal sample was tested in duplicate. However, the normalized read counts per detected astrovirus species differed substantially between participants, which was related to the different laboratory methods used for data generation. Further modeling of the mNGS data indicated the importance of selecting appropriate reference data for mNGS read classification. As virus- or sample-specific biases may apply, caution is needed when extrapolating this swine feces-based PT for the detection of other RNA viruses or using different sample types. The suitability of experimental design to a given pathogen/sample matrix combination, quality assurance, interpretation, and follow-up investigation remain critical factors for the diagnostic interpretation of mNGS results. IMPORTANCE: Metagenomic shotgun sequencing (mNGS) is a generic molecular diagnostic method, involving laboratory preparation of samples, sequencing, bioinformatic analysis of millions of short sequences, and interpretation of the results. In this paper, we investigated the performance of mNGS on the detection of porcine astroviruses, a model for RNA viruses in a pig fecal material, among six European veterinary and public health laboratories. We showed that different methods for data generation affect mNGS performance among participants and that the selection of reference genomes is crucial for read classification. Follow-up investigation remains a critical factor for the diagnostic interpretation of mNGS results. The paper contributes to potential improvements of mNGS as a diagnostic tool in clinical settings.</p
Metagenomics-Based Proficiency Test of Smoked Salmon Spiked with a Mock Community
peer reviewedAn inter-laboratory proficiency test was organized to assess the ability of participants to perform shotgun metagenomic sequencing of cold smoked salmon, experimentally spiked with a mock community composed of six bacteria, one parasite, one yeast, one DNA, and two RNA viruses. Each participant applied its in-house wet-lab workflow(s) to obtain the metagenomic dataset(s), which were then collected and analyzed using MG-RAST. A total of 27 datasets were analyzed. Sample pre-processing, DNA extraction protocol, library preparation kit, and sequencing platform, influenced the abundance of specific microorganisms of the mock community. Our results highlight that despite differences in wet-lab protocols, the reads corresponding to the mock community members spiked in the cold smoked salmon, were both detected and quantified in terms of relative abundance, in the metagenomic datasets, proving the suitability of shotgun metagenomic sequencing as a genomic tool to detect microorganisms belonging to different domains in the same food matrix. The implementation of standardized wet-lab protocols would highly facilitate the comparability of shotgun metagenomic sequencing dataset across laboratories and sectors. Moreover, there is a need for clearly defining a sequencing reads threshold, to consider pathogens as detected or undetected in a food sample
Equine arteritis virus induced cell death is associated with activation of the intrinsic apoptotic signalling pathway
Equine arteritis virus (EAV) causes a respiratory and reproductive disease in horses, equine viral arteritis. Though cell death in infection with EAV is considered to occur by apoptosis, the underlying molecular mechanism has not been extensively elucidated. We investigated the expression of mRNA of pro-apoptotic and caspase genes during EAV infection in BHK21 cells, a well-established cell type for EAV replication. Using a SYBR Green real-time PCR, mRNA of p53, Bax, caspase 3 and caspase 9 were found up-regulated in a time dependent manner in EAV infected cells. Western blot analysis for caspase 3 and caspase 9 showed expression of cleaved forms of these proteins during EAV infection. In addition, a luminescence-based cell assay for caspase 3/7 activation as a hallmark in apoptosis confirmed apoptotic cell death. The findings demonstrate that cell death in EAV infected BHK21 cells results from apoptosis mediated through the intrinsic signalling pathway
Molecular Epidemiology of Bovine Coronavirus on the Basis of Comparative Analyses of the S Gene
Bovine coronavirus (BCoV), a group 2 member of the genus Coronavirus in the family Coronaviridae, is an important pathogen in cattle worldwide. It causes diarrhea in adult animals (winter dysentery), as well as enteric and respiratory diseases in calves. The annual occurrence of BCoV epidemics in Sweden and Denmark led to this investigation, with the aim to deepen the knowledge of BCoV epidemiology at the molecular level. A total of 43 samples from outbreaks in both countries were used for PCR amplification and direct sequencing of a 624-nucleotide fragment of the BCoV S gene. Sequence comparison and phylogenetic studies were performed. The results showed (i) identical sequences from different animals in the same herds and from paired nasal and fecal samples, suggesting a dominant virus circulating in each herd at a given time; (ii) sequence differences among four outbreaks in different years in the same herd, indicating new introduction of virus; (iii) identical sequences in four different Danish herds in samples obtained within 2 months, implying virus transmission between herds; and (iv) that at least two different virus strains were involved in the outbreaks of BCoV in Denmark during the spring of 2003. This study presents molecular data of BCoV infections that will contribute to an increased understanding of BCoV epidemiology in cattle populations
Characterization of a Novel Infectious Pancreatic Necrosis Virus (IPNV) from Genogroup 6 Identified in Sea Trout (<i>Salmo trutta</i>) from Lake Vänern, Sweden
In November 2016, infectious pancreatic necrosis virus (IPNV) was isolated from a broodstock female of landlocked sea trout (Salmo trutta) in Lake Vänern in Sweden. VP2 gene sequencing placed the IPNV isolate in genogroup 6, for which pathogenicity is largely unknown. Lake Vänern hosts landlocked sea trout and salmon populations that are endangered, and thus the introduction of new pathogens poses a major threat. In this study we characterized the novel isolate by conducting an infection trial on three salmonid species present in Lake Vänern, whole genome sequencing of the isolate, and prevalence studies in the wild sea trout and salmon in Lake Vänern. During the infection trial, the pathogenicity of the Swedish isolate was compared to that of a pathogenic genogroup 5 isolate. Dead or moribund fish were collected, pooled, and analyzed by cell culture to identify infected individuals. In the trial, the Swedish isolate was detected in fewer sample pools in all three species compared to the genogroup 5 isolate. In addition, the prevalence studies showed a low prevalence (0.2–0.5%) of the virus in the feral salmonids in Lake Vänern. Together the data suggest that the novel Swedish IPNV genogroup 6 isolate is only mildly pathogenic to salmonids