37 research outputs found

    Diffusion of hydrophobin proteins in solution and interactions with a graphite surface

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hydrophobins are small proteins produced by filamentous fungi that have a variety of biological functions including coating of spores and surface adhesion. To accomplish these functions, they rely on unique interface-binding properties. Using atomic-detail implicit solvent rigid-body Brownian dynamics simulations, we studied the diffusion of HFBI, a class II hydrophobin from <it>Trichoderma reesei</it>, in aqueous solution in the presence and absence of a graphite surface.</p> <p>Results</p> <p>In the simulations, HFBI exists in solution as a mixture of monomers in equilibrium with different types of oligomers. The oligomerization state depends on the conformation of HFBI. When a Highly Ordered Pyrolytic Graphite (HOPG) layer is present in the simulated system, HFBI tends to interact with the HOPG layer through a hydrophobic patch on the protein.</p> <p>Conclusions</p> <p>From the simulations of HFBI solutions, we identify a tetrameric encounter complex stabilized by non-polar interactions between the aliphatic residues in the hydrophobic patch on HFBI. After the formation of the encounter complex, a local structural rearrangement at the protein interfaces is required to obtain the tetrameric arrangement seen in HFBI crystals. Simulations performed with the graphite surface show that, due to a combination of a geometric hindrance and the interaction of the aliphatic sidechains with the graphite layer, HFBI proteins tend to accumulate close to the hydrophobic surface.</p

    Structure and function of the N-terminal domain of the yeast telomerase reverse transcriptase

    Get PDF
    © The Author(s) 2017. The elongation of single-stranded DNA repeats at the 3'-ends of chromosomes by telomerase is a key process in maintaining genome integrity in eukaryotes. Abnormal activation of telomerase leads to uncontrolled cell division, whereas its down-regulation is attributed to ageing and several pathologies related to early cell death. Telomerase function is based on the dynamic interactions of its catalytic subunit (TERT) with nucleic acids-telomerase RNA, telomeric DNA and the DNA/RNA heteroduplex. Here, we present the crystallographic and NMR structures of the N-terminal (TEN) domain of TERT from the thermotolerant yeastHansenula polymorpha and demonstrate the structural conservation of the core motif in evolutionarily divergent organisms. We identify the TEN residues that are involved in interactions with the telomerase RNA and in the recognition of the 'fork' at the distal end of the DNA product/RNA template heteroduplex. We propose that the TEN domain assists telomerase biological function and is involved in restricting the size of the heteroduplex during telomere repeat synthesis

    Catalytic cleavage of HEAT and subsequent covalent binding of the tetralone moiety by the SARS-CoV-2 main protease

    Get PDF
    Here we present the crystal structure of SARS-CoV-2 main protease (Mpro) covalently bound to 2-methyl-1-tetralone. This complex was obtained by co-crystallization of Mpro with HEAT (2-(((4-hydroxyphenethyl)amino)methyl)-3,4-dihydronaphthalen-1(2H)-one) in the framework of a large X-ray crystallographic screening project of Mpro against a drug repurposing library, consisting of 5632 approved drugs or compounds in clinical phase trials. Further investigations showed that HEAT is cleaved by Mpro in an E1cB-like reaction mechanism into 2-methylene-1-tetralone and tyramine. The catalytic Cys145 subsequently binds covalently in a Michael addition to the methylene carbon atom of 2-methylene-1-tetralone. According to this postulated model HEAT is acting in a pro-drug-like fashion. It is metabolized by Mpro, followed by covalent binding of one metabolite to the active site. The structure of the covalent adduct elucidated in this study opens up a new path for developing non-peptidic inhibitors

    Massive X-ray screening reveals two allosteric drug binding sites of SARS-CoV-2 main protease

    Get PDF
    The coronavirus disease (COVID-19) caused by SARS-CoV-2 is creating tremendous health problems and economical challenges for mankind. To date, no effective drug is available to directly treat the disease and prevent virus spreading. In a search for a drug against COVID-19, we have performed a massive X-ray crystallographic screen of repurposing drug libraries containing 5953 individual compounds against the SARS-CoV-2 main protease (Mpro), which is a potent drug target as it is essential for the virus replication. In contrast to commonly applied X-ray fragment screening experiments with molecules of low complexity, our screen tested already approved drugs and drugs in clinical trials. From the three-dimensional protein structures, we identified 37 compounds binding to Mpro. In subsequent cell-based viral reduction assays, one peptidomimetic and five non-peptidic compounds showed antiviral activity at non-toxic concentrations. Interestingly, two compounds bind outside the active site to the native dimer interface in close proximity to the S1 binding pocket. Another compound binds in a cleft between the catalytic and dimerization domain of Mpro. Neither binding site is related to the enzymatic active site and both represent attractive targets for drug development against SARS-CoV-2. This X-ray screening approach thus has the potential to help deliver an approved drug on an accelerated time-scale for this and future pandemics

    X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease

    Get PDF
    The coronavirus disease (COVID-19) caused by SARS-CoV-2 is creating tremendous human suffering. To date, no effective drug is available to directly treat the disease. In a search for a drug against COVID-19, we have performed a high-throughput X-ray crystallographic screen of two repurposing drug libraries against the SARS-CoV-2 main protease (M^(pro)), which is essential for viral replication. In contrast to commonly applied X-ray fragment screening experiments with molecules of low complexity, our screen tested already approved drugs and drugs in clinical trials. From the three-dimensional protein structures, we identified 37 compounds that bind to M^(pro). In subsequent cell-based viral reduction assays, one peptidomimetic and six non-peptidic compounds showed antiviral activity at non-toxic concentrations. We identified two allosteric binding sites representing attractive targets for drug development against SARS-CoV-2

    X ray screening identifies active site and allosteric inhibitors of SARS CoV 2 main protease

    Get PDF
    The coronavirus disease COVID 19 caused by SARS CoV 2 is creating tremendous human suffering. To date, no effective drug is available to directly treat the disease. In a search for a drug against COVID 19, we have performed a high throughput x ray crystallographic screen of two repurposing drug libraries against the SARS CoV 2 main protease Mpro , which is essential for viral replication. In contrast to commonly applied x ray fragment screening experiments with molecules of low complexity, our screen tested already approved drugs and drugs in clinical trials. From the three dimensional protein structures, we identified 37 compounds that bind to Mpro. In subsequent cell based viral reduction assays, one peptidomimetic and six nonpeptidic compounds showed antiviral activity at nontoxic concentrations. We identified two allosteric binding sites representing attractive targets for drug development against SARS CoV

    Hydrophobin HFBII in detail:Ultrahigh-resolution structure at 0.75 Å

    No full text
    Hydrophobins are small proteins secreted by filamentous fungi that have a unique ability to spontaneously form amphiphilic layers. Hydrophobins have only recently been structurally characterized through the first crystal structure determination of a protein of this class, Trichoderma reesei hydrophobin HFBII [Hakanpää, Paananen et al. (2004), J. Biol. Chem. 279, 534-539]. The resolution of the HFBII structure has now been extended to an ultrahigh resolution of 0.75 A. The structure was refined conventionally and multipole refinement has been initiated. The ultrahigh-resolution structure is analyzed here in detail and comparison is made to the previous atomic resolution structure of the same protein as well as to other ultrahigh-resolution structures found in the Protein Data Bank

    Inhibitor screening and structural characterization of virulence factors from SARS-CoV-2

    No full text
    Coronavirus induced zoonotic diseases can cause pandemics with unforeseeable consequences to human health and global economy. Our project aims to screen and develop effective therapeutics against SARS-CoV-2, targeting its replication-transcription complex (RTC). Following an interdisciplinary research approach, compound libraries of approved drugs are used for the discovery of potent inhibitors for proteins of the RTC and the binding mode of these enzymeinhibitor complexes is studied by X-ray crystallography. Our workflow includes the production of proteins involved in the coronavirus RTC, the high-throughput inhibitor screening with fluorescence-based assays using drug repurposing libraries and the structure/function analysis of the identified enzyme-inhibitor complexes. The advantages of this approach is that it is cost efficient, high-throughput, allows the direct identification of potent inhibitors and ensures optimal beamtime usage. Furthermore, such a platform can be successfully used in future viral outbreaks. In this presentation we will give an overview of this project and the results achieved to date. We will focus on one of the target proteins, namely the uridine-specific endoribonuclease nsp15, and apart from the results from its inhibitor screening we will also present findings that allowed us to shed light on important activity determinants of this enzyme
    corecore