65 research outputs found

    Overview of Prostaglandin E2 (PGE2)-Targeting Radiolabelled Imaging Probes from Preclinical Perspective: Lessons Learned and Road Ahead

    Get PDF
    As malignancies still represent one of the major health concerns worldwide, early tumor identification is among the priorities of today’s science. Given the strong association between cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2), PGE2 receptors (EPs), and carcinogenesis, target-specific molecules directed towards the components of the COX2/PGE2/EP axis seem to be promising imaging probes in the diagnostics of PGE2pos. neoplasms and in the design of anti-cancer drugs. Featured with outstanding inclusion forming capability, β-cyclodextrins (CDs) including randomly methylated β-CD (RAMEB) were reported to complex with PGE2. Therefore, radiolabelled β-CDs could be valuable vectors in the molecular imaging of PGE2-related tumorigenesis. In vivo preclinical small animal model systems applying positron emission tomography (PET) ensure a well-suited scenario for the assessment of PGE2-affine labelled CD derivatives. Previous translational studies dealt with the evaluation of the tumor-homing capability of Gallium-68 (68Ga) and Bismuth-205/206 (205/206Bi)-appended β-CD compounds conjugated with chelator NODAGA or DOTAGA: [68Ga]Ga-NODAGA-2-hydroxypropyl-β-cyclodextrin/HPBCD, [68Ga]Ga-NODAGA-RAMEB, [68Ga]Ga-DOTAGA-RAMEB, and [205/206Bi]Bi-DOTAGA-RAMEB in experimental tumors with different PGE2 expression. These imaging probes project the establishment of tailor-made PET diagnostics of PGE2pos. malignancies. In the present review, we provide a detailed overview of the in vivo investigations of radiolabelled PGE2-directed CDs, highlighting the importance of the integration of translational discoveries into routine clinical usage

    The effect of COVID-19 vaccination status on all-cause mortality in patients hospitalised with COVID-19 in Hungary during the delta wave of the pandemic

    Get PDF
    The high mortality of patients with coronavirus disease 2019 (COVID-19) is effectively reduced by vaccination. However, the effect of vaccination on mortality among hospitalised patients is under-researched. Thus, we investigated the effect of a full primary or an additional booster vaccination on in-hospital mortality among patients hospitalised with COVID-19 during the delta wave of the pandemic. This retrospective cohort included all patients (n = 430) admitted with COVID-19 at Semmelweis University Department of Medicine and Oncology in 01/OCT/2021–15/DEC/2021. Logistic regression models were built with COVID-19-associated in-hospital/30 day-mortality as outcome with hierarchical entry of predictors of vaccination, vaccination status, measures of disease severity, and chronic comorbidities. Deceased COVID-19 patients were older and presented more frequently with cardiac complications, chronic kidney disease, and active malignancy, as well as higher levels of inflammatory markers, serum creatinine, and lower albumin compared to surviving patients (all p < 0.05). However, the rates of vaccination were similar (52–55%) in both groups. Based on the fully adjusted model, there was a linear decrease of mortality from no/incomplete vaccination (ref) through full primary (OR 0.69, 95% CI: 0.39–1.23) to booster vaccination (OR 0.31, 95% CI 0.13–0.72, p = 0.006). Although unadjusted mortality was similar among vaccinated and unvaccinated patients, this was explained by differences in comorbidities and disease severity. In adjusted models, a full primary and especially a booster vaccination improved survival of patients hospitalised with COVID-19 during the delta wave of the pandemic. Our findings may improve the quality of patient provider discussions at the time of admission

    PET Probes for Preclinical Imaging of GRPR-Positive Prostate Cancer: Comparative Preclinical Study of [68Ga]Ga-NODAGA-AMBA and [44Sc]Sc-NODAGA-AMBA

    Get PDF
    Gastrin-releasing peptide receptors (GRPR) are overexpressed in prostate cancer (PCa). Since bombesin analogue aminobenzoic-acid (AMBA) binds to GRPR with high affinity, scandium-44 conjugated AMBA is a promising radiotracer in the PET diagnostics of GRPR positive tumors. Herein, the GRPR specificity of the newly synthetized [44Sc]Sc-NODAGA-AMBA was investigated in vitro and in vivo applying PCa PC-3 xenograft. After the in-vitro assessment of receptor binding, PC-3 tumor-bearing mice were injected with [44Sc]Sc/[68Ga]Ga-NODAGA-AMBA (in blocking studies with bombesin) and in-vivo PET examinations were performed to determine the radiotracer uptake in standardized uptake values (SUV). 44Sc/68Ga-labelled NODAGA-AMBA was produced with high molar activity (approx. 20 GBq/&micro;moL) and excellent radiochemical purity. The in-vitro accumulation of [44Sc]Sc-NODAGA-AMBA in PC-3 cells was approximately 25-fold higher than that of the control HaCaT cells. Relatively higher uptake was found in vitro, ex vivo, and in vivo in the same tumor with the 44Sc-labelled probe compared to [68Ga]Ga-NODAGA-AMBA. The GRPR specificity of [44Sc]Sc-NODAGA-AMBA was confirmed by significantly (p &le; 0.01) decreased %ID and SUV values in PC-3 tumors after bombesin pretreatment. The outstanding binding properties of the novel [44Sc]Sc-NODAGA-AMBA to GRPR outlines its potential to be a valuable radiotracer in the imaging of GRPR-positive PCa

    Characteristic mTOR activity in Hodgkin-lymphomas offers a potential therapeutic target in high risk disease – a combined tissue microarray, in vitro and in vivo study

    Get PDF
    BACKGROUND: Targeting signaling pathways is an attractive approach in many malignancies. The PI3K/Akt/mTOR pathway is activated in a number of human neoplasms, accompanied by lower overall and/or disease free survival. mTOR kinase inhibitors have been introduced in the therapy of renal cell carcinoma and mantle cell lymphoma, and several trials are currently underway. However, the pathological characterization of mTOR activity in lymphomas is still incomplete. METHODS: mTOR activity and the elements of mTOR complexes were investigated by immunohistochemistry on tissue microarrays representing different human non-Hodgkin-lymphomas (81 cases) and Hodgkin-lymphomas (87 cases). The expression of phospho-mTOR, phospho-4EBP1, phospho-p70S6K, phospho-S6, Rictor, Raptor and Bcl-2, Bcl-xL, Survivin and NF-kappaB-p50 were evaluated, and mTOR activity was statistically analyzed along with 5-year survival data. The in vitro and in vivo effect of the mTOR inhibitor rapamycin was also examined in human Hodgkin-lymphoma cell lines. RESULTS: The majority (>50%) of mantle cell lymphoma, Burkitt lymphoma, diffuse large B-cell lymphoma, anaplastic large-cell lymphoma and Hodgkin-lymphoma cases showed higher mTOR activity compared to normal lymphoid tissues. Hodgkin-lymphoma was characterized by high mTOR activity in 93% of the cases, and Bcl-xL and NF-kappaB expression correlated with this mTOR activity. High mTOR activity was observed in the case of both favorable and unfavorable clinical response. Low mTOR activity was accompanied by complete remission and at least 5-year disease free survival in Hodgkin-lymphoma patients. However, statistical analysis did not identify correlation beetween mTOR activity and different clinical data of HL patients, such as survival. We also found that Rictor (mTORC2) was not overexpressed in Hodgkin-lymphoma biopsies and cell lines. Rapamycin inhibited proliferation and induced apoptosis in Hodgkin-lymphoma cells both in vitro and in vivo, moreover, it increased the apoptotic effect of chemotherapeutic agents. CONCLUSIONS: Targeting mTOR activity may be a potential therapeutic tool in lymphomas. The presence of mTOR activity probably indicates that the inclusion of mTOR inhibition in the therapy of Hodgkin-lymphomas may be feasible and beneficial, especially when standard protocols are ineffective, and it may also allow dose reduction in order to decrease late treatment toxicity. Most likely, the combination of mTOR inhibitors with other agents will offer the highest efficiency for achieving the best clinical response

    Overview of Prostaglandin E2 (PGE2)-Targeting Radiolabelled Imaging Probes from Preclinical Perspective: Lessons Learned and Road Ahead

    Get PDF
    As malignancies still represent one of the major health concerns worldwide, early tumor identification is among the priorities of today’s science. Given the strong association between cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2), PGE2 receptors (EPs), and carcinogenesis, target-specific molecules directed towards the components of the COX2/PGE2/EP axis seem to be promising imaging probes in the diagnostics of PGE2pos. neoplasms and in the design of anti-cancer drugs. Featured with outstanding inclusion forming capability, β-cyclodextrins (CDs) including randomly methylated β-CD (RAMEB) were reported to complex with PGE2. Therefore, radiolabelled β-CDs could be valuable vectors in the molecular imaging of PGE2-related tumorigenesis. In vivo preclinical small animal model systems applying positron emission tomography (PET) ensure a well-suited scenario for the assessment of PGE2-affine labelled CD derivatives. Previous translational studies dealt with the evaluation of the tumor-homing capability of Gallium-68 (68Ga) and Bismuth-205/206 (205/206Bi)-appended β-CD compounds conjugated with chelator NODAGA or DOTAGA: [68Ga]Ga-NODAGA-2-hydroxypropyl-β-cyclodextrin/HPBCD, [68Ga]Ga-NODAGA-RAMEB, [68Ga]Ga-DOTAGA-RAMEB, and [205/206Bi]Bi-DOTAGA-RAMEB in experimental tumors with different PGE2 expression. These imaging probes project the establishment of tailor-made PET diagnostics of PGE2pos. malignancies. In the present review, we provide a detailed overview of the in vivo investigations of radiolabelled PGE2-directed CDs, highlighting the importance of the integration of translational discoveries into routine clinical usage

    Rapamycin can restore the negative regulatory function of transforming growth factor beta 1 in high grade lymphomas.

    No full text
    TGF-β1 (transforming growth factor beta 1) is a negative regulator of lymphocytes, inhibiting proliferation and switching on the apoptotic program in normal lymphoid cells. Lymphoma cells often lose their sensitivity to proapoptotic/anti-proliferative regulators such as TGF-β1. Rapamycin can influence both mTOR (mammalian target of rapamycin) and TGF-β signaling, and through these pathways it is able to enhance TGF-β induced anti-proliferative and apoptotic responses. In the present work we investigated the effect of rapamycin and TGF-β1 combination on cell growth and on TGF-β and mTOR signalling events in lymphoma cells. Rapamycin, an inhibitor of mTORC1 (mTOR complex 1) did not elicit apoptosis in lymphoma cells; however, the combination of rapamycin with exogenous TGF-β1 induced apoptosis and restored TGF-β1 dependent apoptotic machinery in several lymphoma cell lines with reduced TGF-β sensitivity in vitro. In parallel, the phosphorylation of p70 ribosomal S6 kinase (p70S6K) and ribosomal S6 protein, targets of mTORC1, was completely eliminated. Knockdown of Smad signalling by Smad4 siRNA had no influence on apoptosis induced by the rapamycin+TGF-β1, suggesting that this effect is independent of Smad signalling. However, apoptosis induction was dependent on early protein phosphatase 2A (PP2A) activity, and in part on caspases. Rapamycin+TGF-β1 induced apoptosis was not completely eliminated by a caspase inhibitor. These results suggest that high mTOR activity contributes to TGF-β resistance and lowering mTORC1 kinase activity may provide a tool in high grade B-cell lymphoma therapy by restoring the sensitivity to normally available regulators such as TGF-β1

    Growth inhibitory effect of rapamycin in Hodgkin-lymphoma cell lines characterized by constitutive NOTCH1 activation

    No full text
    Growing evidence suggests that deregulation of signalling elements of Notch and mammalian target of rapamycin (mTOR) pathways contribute to tumorigenesis. These signals play important roles in cellular functions and malignancies. Their tumorigenic role in T-cell acute lymphoblastic leukaemia (T-ALL) is well known; however, their potential interactions and functions are poorly characterized in Hodgkin lymphoma (HL). The aim of our study was to characterize mTOR and Notch signalling elements in HL cell lines (DEV, L1236, KMH2) and human biopsies and to investigate their cross-talk in the tumorous process. High mTOR activity and constitutive NOTCH1 activation was confirmed in HL cell lines, without any known oncogenic mutations in key elements, including those common to both pathways. The anti-tumour effect of Notch inhibitors are well known from several preclinical models but resistance and side effects occur in many cases. Here, we tested mTOR and Notch inhibitors and their combinations in gamma-secretase inhibitor (GSI) resistant HL cells in vitro and in vivo. mTOR inhibitor alone or in combination was able to reduce tumour growth; furthermore, it was more effective in xenograft models in vivo. Based on these results, we suggest that constitutively activated NOTCH1 may be a potential target in HL therapy; furthermore, mTOR inhibitors may be effective for decreasing tumour growth if resistance to Notch inhibitors develop
    corecore