50 research outputs found

    The Cross-entropy of Piecewise Linear Probability Density Functions

    Get PDF
    The cross-entropy and its related terms from information theory (e.g.~entropy, Kullback–Leibler divergence) are used throughout artificial intelligence and machine learning. This includes many of the major successes, both current and historic, where they commonly appear as the natural objective of an optimisation procedure for learning model parameters, or their distributions. This paper presents a novel derivation of the differential cross-entropy between two 1D probability density functions represented as piecewise linear functions. Implementation challenges are resolved and experimental validation is presented, including a rigorous analysis of accuracy and a demonstration of using the presented result as the objective of a neural network. Previously, cross-entropy would need to be approximated via numerical integration, or equivalent, for which calculating gradients is impractical. Machine learning models with high parameter counts are optimised primarily with gradients, so if piecewise linear density representations are to be used then the presented analytic solution is essential. This paper contributes the necessary theory for the practical optimisation of information theoretic objectives when dealing with piecewise linear distributions directly. Removing this limitation expands the design space for future algorithms

    Improvement of Automatic Target Recognition Through Synthetic Data Augmentation

    Get PDF
    Data sets of well­ labelled and diverse acoustic imagery of the seabed are scarce. However, a recent breakthrough in synthetic aperture sonar (SAS) image simulation has facilitated the rapid generation of realistic echo data. The synthetic data include important aspects of the acoustic wave physics, such as aspect­ dependence, layover, diffraction, speckle, focusing errors, and artefacts. Moreover, it provides high­ fidelity label information. This combination of speed, realism, and detail has enabled the use of synthetic data to improve the volume and diversity of training data for deep learning algorithms in automatic target recognition (ATR). We present an overview of the rapid simulation model, alongside an existing SAS simulation model, and demonstrate its application to ATR training for the detection and classification of underwater munitions and unexploded ordnance

    Automatic recognition of underwater munitions from multi-view sonar surveys using semi supervised machine learning: a simulation study

    Get PDF
    This paper presents a machine learning technique for using large unlabelled survey datasets to aid automatic classification. We have demonstrated the benefit of this technique on a simulated synthetic aperture sonar (SAS) dataset. We designed a machine learning model to encode a representation of SAS images from which new SAS views can be generated. This novel task requires the model to learn the physics and content of SAS images without the requirement for human labels. This is called self-supervised learning. The pre-trained model can then be fine-tuned to perform classification on a small amount of labelled examples. This is called semi-supervised learning. By using a simulated dataset we can step-by-step increase the realism to identify the sources of difficulty for applying this method to real SAS data, and have a performance bench mark from this more idealised dataset. We have quantified the improved accuracy for the re-view model (ours), against a traditional self-supervised approach (autoencoder), and no pre-training. We have also demonstrated generating novel views to qualitatively inspect the model's learned representation. These results demonstrate our re-view self-supervised task aids the downstream classification task and model interpretability on simulated data, with immediate potential for application to real-world UXO monitoring

    Automatic recognition of underwater munitions from multi-view sonar surveys using semi supervised machine learning: a simulation study

    Get PDF
    This paper presents a machine learning technique for using large unlabelled survey datasets to aid automatic classification. We have demonstrated the benefit of this technique on a simulated synthetic aperture sonar (SAS) dataset. We designed a machine learning model to encode a representation of SAS images from which new SAS views can be generated. This novel task requires the model to learn the physics and content of SAS images without the requirement for human labels. This is called self-supervised learning. The pre-trained model can then be fine-tuned to perform classification on a small amount of labelled examples. This is called semi-supervised learning. By using a simulated dataset we can step-by-step increase the realism to identify the sources of difficulty for applying this method to real SAS data, and have a performance bench mark from this more idealised dataset. We have quantified the improved accuracy for the re-view model (ours), against a traditional self-supervised approach (autoencoder), and no pre-training. We have also demonstrated generating novel views to qualitatively inspect the model's learned representation. These results demonstrate our re-view self-supervised task aids the downstream classification task and model interpretability on simulated data, with immediate potential for application to real-world UXO monitoring

    Photochemical fingerprinting is a sensitive probe for the detection of synthetic cannabinoid receptor agonists; towards robust point-of-care detection

    Get PDF
    With synthetic cannabinoid receptor agonist (SCRA) use still prevalent across Europe and structurally advanced generations emerging, it is imperative that drug detection methods advance in parallel. SCRAs are a chemically diverse and evolving group, which makes rapid detection challenging. We have previously shown that fluorescence spectral fingerprinting (FSF) has the potential to provide rapid assessment of SCRA presence directly from street material with minimal processing and in saliva. Enhancing the sensitivity and discriminatory ability of this approach has high potential to accelerate the delivery of a point-of-care technology that can be used confidently by a range of stakeholders, from medical to prison staff. We demonstrate that a range of structurally distinct SCRAs are photochemically active and give rise to distinct FSFs after irradiation. To explore this in detail, we have synthesized a model series of compounds which mimic specific structural features of AM-694. Our data show that FSFs are sensitive to chemically conservative changes, with evidence that this relates to shifts in the electronic structure and cross-conjugation. Crucially, we find that the photochemical degradation rate is sensitive to individual structures and gives rise to a specific major product, the mechanism and identification of which we elucidate through density-functional theory (DFT) and time-dependent DFT. We test the potential of our hybrid “photochemical fingerprinting” approach to discriminate SCRAs by demonstrating SCRA detection from a simulated smoking apparatus in saliva. Our study shows the potential of tracking photochemical reactivity via FSFs for enhanced discrimination of SCRAs, with successful integration into a portable device

    Photochemical Fingerprinting Is a Sensitive Probe for the Detection of Synthetic Cannabinoid Receptor Agonists; Toward Robust Point-of-Care Detection

    Get PDF
    With synthetic cannabinoid receptor agonist (SCRA) use still prevalent across Europe and structurally advanced generations emerging, it is imperative that drug detection methods advance in parallel. SCRAs are a chemically diverse and evolving group, which makes rapid detection challenging. We have previously shown that fluorescence spectral fingerprinting (FSF) has the potential to provide rapid assessment of SCRA presence directly from street material with minimal processing and in saliva. Enhancing the sensitivity and discriminatory ability of this approach has high potential to accelerate the delivery of a point-of-care technology that can be used confidently by a range of stakeholders, from medical to prison staff. We demonstrate that a range of structurally distinct SCRAs are photochemically active and give rise to distinct FSFs after irradiation. To explore this in detail, we have synthesized a model series of compounds which mimic specific structural features of AM-694. Our data show that FSFs are sensitive to chemically conservative changes, with evidence that this relates to shifts in the electronic structure and cross-conjugation. Crucially, we find that the photochemical degradation rate is sensitive to individual structures and gives rise to a specific major product, the mechanism and identification of which we elucidate through density-functional theory (DFT) and time-dependent DFT. We test the potential of our hybrid "photochemical fingerprinting"approach to discriminate SCRAs by demonstrating SCRA detection from a simulated smoking apparatus in saliva. Our study shows the potential of tracking photochemical reactivity via FSFs for enhanced discrimination of SCRAs, with successful integration into a portable device.</p

    Smart homes and their users:a systematic analysis and key challenges

    Get PDF
    Published research on smart homes and their users is growing exponentially, yet a clear understanding of who these users are and how they might use smart home technologies is missing from a field being overwhelmingly pushed by technology developers. Through a systematic analysis of peer-reviewed literature on smart homes and their users, this paper takes stock of the dominant research themes and the linkages and disconnects between them. Key findings within each of nine themes are analysed, grouped into three: (1) views of the smart home-functional, instrumental, socio-technical; (2) users and the use of the smart home-prospective users, interactions and decisions, using technologies in the home; and (3) challenges for realising the smart home-hardware and software, design, domestication. These themes are integrated into an organising framework for future research that identifies the presence or absence of cross-cutting relationships between different understandings of smart homes and their users. The usefulness of the organising framework is illustrated in relation to two major concerns-privacy and control-that have been narrowly interpreted to date, precluding deeper insights and potential solutions. Future research on smart homes and their users can benefit by exploring and developing cross-cutting relationships between the research themes identified

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    A novel approach of homozygous haplotype sharing identifies candidate genes in autism spectrum disorder

    Get PDF
    Autism spectrum disorder (ASD) is a highly heritable disorder of complex and heterogeneous aetiology. It is primarily characterized by altered cognitive ability including impaired language and communication skills and fundamental deficits in social reciprocity. Despite some notable successes in neuropsychiatric genetics, overall, the high heritability of ASD (~90%) remains poorly explained by common genetic risk variants. However, recent studies suggest that rare genomic variation, in particular copy number variation, may account for a significant proportion of the genetic basis of ASD. We present a large scale analysis to identify candidate genes which may contain low-frequency recessive variation contributing to ASD while taking into account the potential contribution of population differences to the genetic heterogeneity of ASD. Our strategy, homozygous haplotype (HH) mapping, aims to detect homozygous segments of identical haplotype structure that are shared at a higher frequency amongst ASD patients compared to parental controls. The analysis was performed on 1,402 Autism Genome Project trios genotyped for 1 million single nucleotide polymorphisms (SNPs). We identified 25 known and 1,218 novel ASD candidate genes in the discovery analysis including CADM2, ABHD14A, CHRFAM7A, GRIK2, GRM3, EPHA3, FGF10, KCND2, PDZK1, IMMP2L and FOXP2. Furthermore, 10 of the previously reported ASD genes and 300 of the novel candidates identified in the discovery analysis were replicated in an independent sample of 1,182 trios. Our results demonstrate that regions of HH are significantly enriched for previously reported ASD candidate genes and the observed association is independent of gene size (odds ratio 2.10). Our findings highlight the applicability of HH mapping in complex disorders such as ASD and offer an alternative approach to the analysis of genome-wide association data
    corecore