867 research outputs found
Manufacturing a thin wire electrostatic trap (TWIST) for ultracold polar molecules
We present a detailed description on how to build a Thin WIre electroStatic
Trap (TWIST) for ultracold polar molecules. It is the first design of an
electrostatic trap that can be superimposed directly onto a magneto optical
trap (MOT). We can thus continuously produce ultracold polar molecules via
photoassociation from a two species MOT and instantaneously trap them in the
TWIST without the need for complex transfer schemes. Despite the spatial
overlap of the TWIST and the MOT, the two traps can be operated and optimized
completely independently due to the complementary nature of the utilized
trapping mechanisms.Comment: 5 pages, 8 figures, updated conten
Trapping of ultracold polar molecules with a Thin Wire Electrostatic Trap
We describe the realization of a dc electric-field trap for ultracold polar
molecules, the thin-wire electrostatic trap (TWIST). The thin wires that form
the electrodes of the TWIST allow us to superimpose the trap onto a
magneto-optical trap (MOT). In our experiment, ultracold polar NaCs molecules
in their electronic ground state are created in the MOT via photoassociation,
achieving a continuous accumulation in the TWIST of molecules in low-field
seeking states. Initial measurements show that the TWIST trap lifetime is
limited only by the background pressure in the chamber.Comment: 4 pages, 3 figure
Formation of ultracold RbCs molecules by photoassociation
The formation of ultracold metastable RbCs molecules is observed in a double
species magneto-optical trap through photoassociation below the
^85Rb(5S_1/2)+^133Cs(6P_3/2) dissociation limit followed by spontaneous
emission. The molecules are detected by resonance enhanced two-photon
ionization. Using accurate quantum chemistry calculations of the potential
energy curves and transition dipole moment, we interpret the observed
photoassociation process as occurring at short internuclear distance, in
contrast with most previous cold atom photoassociation studies. The vibrational
levels excited by photoassociation belong to the 5th 0^+ or the 4th 0^-
electronic states correlated to the Rb(5P_1/2,3/2)+Cs(6S_1/2) dissociation
limit. The computed vibrational distribution of the produced molecules shows
that they are stabilized in deeply bound vibrational states of the lowest
triplet state. We also predict that a noticeable fraction of molecules is
produced in the lowest level of the electronic ground state
Circadian rhythms of behavioral cone sensitivity and long wavelength opsin mRNA expression: a correlation study in zebrafish
Using a behavioral assay based on visually mediated escape responses, we measured long-wavelength-sensitive red cone (LC) sensitivities in zebrafish. In a 24 h period, the zebrafish were least sensitive to red light in the early morning and most sensitive in the late afternoon. To investigate if the fluctuation of behavioral cone sensitivity correlates with opsin gene expression, we measured LC opsin mRNA expression at different times in the day and night under different lighting conditions. Under a normal light–dark cycle, the expression of LC opsin mRNA determined by real-time RT–PCR was low in the early morning and high in the late afternoon, similar to the fluctuation of behavioral cone sensitivity. This rhythm of LC opsin mRNA expression, however, dampened out gradually in constant conditions. After 24 h of constant light (LL), the expression of LC opsin mRNA dropped to levels similar to those determined in the early morning in control animals. By contrast, when the zebrafish were kept in constant dark (DD), the expression of LC opsin mRNA increased, to levels about 30-fold higher than the expression in the early morning in control animals. This day–night fluctuation in LC opsin mRNA expression was correlated to changes in opsin density in the outer segment of cone photoreceptor cells. Microspectrophotometry (MSP) measurements found significant differences in red cone outer segment optical density with a rhythm following the behavioral sensitivity. Furthermore, dopamine modulated the circadian rhythms in expression of LC opsin mRNA. Administration of dopamine increased LC opsin mRNA expression, but only in the early morning
Formation and interactions of cold and ultracold molecules: new challenges for interdisciplinary physics
Progress on researches in the field of molecules at cold and ultracold
temperatures is reported in this review. It covers extensively the experimental
methods to produce, detect and characterize cold and ultracold molecules
including association of ultracold atoms, deceleration by external fields and
kinematic cooling. Confinement of molecules in different kinds of traps is also
discussed. The basic theoretical issues related to the knowledge of the
molecular structure, the atom-molecule and molecule-molecule mutual
interactions, and to their possible manipulation and control with external
fields, are reviewed. A short discussion on the broad area of applications
completes the review.Comment: to appear in Reports on Progress in Physic
Exactly solvable models for multiatomic molecular Bose-Einstein condensates
I introduce two family of exactly solvable models for multiatomic
hetero-nuclear and homo-nuclear molecular Bose-Einstein condensates through the
algebraic Bethe ansatz method. The conserved quantities of the respective
models are also showed.Comment: 11 page
The state of the Martian climate
60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
Modeling the climate impact of Southern Hemisphere ozone depletion:the importance of the ozone dataset
The ozone hole is an important driver of recent Southern Hemisphere (SH) climate change, and capturing these changes is a goal of climate modeling. Most climate models are driven by off-line ozone data sets. Previous studies have shown that there is a substantial range in estimates of SH ozone depletion, but the implications of this range have not been examined systematically. We use a climate model to evaluate the difference between using the ozone forcing (Stratospheric Processes and their Role in Climate (SPARC)) used by many Intergovernmental Panel on Climate Change Fifth Assessment Report (Coupled Model Intercomparison Project) models and one at the upper end of the observed depletion estimates (Binary Database of Profiles (BDBP)). In the stratosphere, we find that austral spring/summer polar cap cooling, geopotential height decreases, and zonal wind increases in the BDBP simulations are all doubled compared to the SPARC simulations, while tropospheric responses are 20–100% larger. These results are important for studies attempting to diagnose the climate fingerprints of ozone depletion
Frequency of extreme Sahelian storms tripled since 1982 in satellite observations
The hydrological cycle is expected to intensify under global
warming, with studies reporting more frequent extreme rain
events in many regions of the world, and predicting increases in future flood frequency. Such early, predominantly mid-latitude observations are essential because of shortcomings within climate models in their depiction of convective rainfall. A globally important group of intense storms—mesoscale convective systems (MCSs)—poses a particular challenge, because they organize dynamically on spatial scales that cannot be resolved by conventional climate models. Here, we use 35 years of satellite observations from the West African Sahel to reveal a persistent increase in the frequency of the most intense MCSs. Sahelian storms are some of the most powerful on the planet, and rain gauges in this region have recorded a rise in ‘extreme’ daily rainfall totals. We find that intense MCS frequency is only weakly related to the multidecadal recovery of Sahel annual rainfall, but is highly correlated with global land temperatures. Analysis of trends across Africa reveals that MCS intensification is limited to a narrow band south of the Sahara desert. During this period, wet-season Sahelian temperatures have not risen, ruling out the possibility that rainfall has intensified in response to locally warmer conditions. On the other hand, the meridional temperature gradient spanning the Sahel has increased in recent decades, consistent with anthropogenic forcing driving enhanced Saharan warming. We argue that Saharan warming intensifies convection within Sahelian MCSs through increased wind shear and changes to the Saharan air layer. The meridional gradient is projected to strengthen throughout the twenty-first century, suggesting that the Sahel will experience particularly marked increases in extreme rain. The remarkably rapid intensification of Sahelian MCSs since the 1980s sheds new light on the response of organized tropical convection to global warming, and challenges conventional projections made by general circulation models
Cold and Ultracold Molecules: Science, Technology, and Applications
This article presents a review of the current state of the art in the
research field of cold and ultracold molecules. It serves as an introduction to
the Special Issue of the New Journal of Physics on Cold and Ultracold Molecules
and describes new prospects for fundamental research and technological
development. Cold and ultracold molecules may revolutionize physical chemistry
and few body physics, provide techniques for probing new states of quantum
matter, allow for precision measurements of both fundamental and applied
interest, and enable quantum simulations of condensed-matter phenomena.
Ultracold molecules offer promising applications such as new platforms for
quantum computing, precise control of molecular dynamics, nanolithography, and
Bose-enhanced chemistry. The discussion is based on recent experimental and
theoretical work and concludes with a summary of anticipated future directions
and open questions in this rapidly expanding research field.Comment: 82 pages, 9 figures, review article to appear in New Journal of
Physics Special Issue on Cold and Ultracold Molecule
- …