68 research outputs found
Non-Markovian master equation for a damped driven two-state system
We present a detailed microscopic derivation for a non-Markovian master
equation for a driven two-state system interacting with a general structured
reservoir. The master equation is derived using the time-convolutionless
projection operator technique in the limit of weak coupling between the
two-state quantum system and its environment. We briefly discuss the Markov
approximation, the secular approximation and their validity.Comment: 6 pages, submitted to proceedings of CEWQO200
Two-qubit non-Markovianity induced by a common environment
We study non-Markovianity as backflow of information in two-qubit systems. We
consider a setting where, by changing the distance between the qubits, one can
interpolate between independent reservoir and common reservoir scenarios. We
demonstrate that non-Markovianity can be induced by the common reservoir and
single out the physical origin of this phenomenon. We show that two-qubit
non-Markovianity coincides with instances of non-divisibility of the
corresponding dynamical map, and we discuss the pair of states maximizing
information flowback. We also discuss the issue of additivity for the measure
we use and in doing so, give an indication of its usefulness as a resource for
multipartite quantum systems.Comment: 9 pages, 5 figures, Published version with minor modification
Non-Markovianity, Loschmidt echo and criticality: a unified picture
A simple relationship between recently proposed measures of non-Markovianity
and the Loschmidt echo is established, holding for a two-level system (qubit)
undergoing pure dephasing due to a coupling with a many-body environment. We
show that the Loschmidt echo is intimately related to the information flowing
out from and occasionally back into the system. This, in turn, determines the
non-Markovianity of the reduced dynamics. In particular, we consider a central
qubit coupled to a quantum Ising ring in the transverse field. In this context,
the information flux between system and environment is strongly affected by the
environmental criticality; the qubit dynamics is shown to be Markovian exactly
and only at the critical point. Therefore non-Markovianity is an indicator of
criticality in the model considered here
Invariant quantum discord in qubit-qutrit systems under local dephasing
We investigate the dynamics of quantum discord and entanglement for a
class of mixed qubit-qutrit states assuming that only the qutrit is under the action of a dephasing channel. We demonstrate that even though the entanglement in the qubit-qutrit state disappears in a finite time interval, partial coherence left in the system enables quantum discord to remain invariant throughout the whole time evolution
Non-Markovian dynamics for an open two-level system without rotating wave approximation: Indivisibility versus backflow of information
By use of the two measures presented recently, the indivisibility and the
backflow of information, we study the non-Markovianity of the dynamics for a
two-level system interacting with a zero-temperature structured environment
without using rotating wave approximation (RWA). In the limit of weak coupling
between the system and the reservoir, and by expanding the time-convolutionless
(TCL) generator to the forth order with respect to the coupling strength, the
time-local non-Markovian master equation for the reduced state of the system is
derived. Under the secular approximation, the exact analytic solution is
obtained and the sufficient and necessary conditions for the indivisibility and
the backflow of information for the system dynamics are presented. In the more
general case, we investigate numerically the properties of the two measures for
the case of Lorentzian reservoir. Our results show the importance of the
counter-rotating terms to the short-time-scale non-Markovian behavior of the
system dynamics, further expose the relations between the two measures and
their rationality as non-Markovian measures. Finally, the complete positivity
of the dynamics of the considered system is discussed
Negativity and quantum discord in Davies environments
We investigate the time evolution of negativity and quantum discord for a
pair of non-interacting qubits with one being weakly coupled to a decohering
Davies--type Markovian environment. At initial time of preparation, the qubits
are prepared in one of the maximally entangled pure Bell states. In the
limiting case of pure decoherence (i.e. pure dephasing), both, the quantum
discord and negativity decay to zero in the long time limit. In presence of a
manifest dissipative dynamics, the entanglement negativity undergoes a sudden
death at finite time while the quantum discord relaxes continuously to zero
with increasing time. We find that in dephasing environments the decay of the
negativity is more propitious with increasing time; in contrast, the evolving
decay of the quantum discord proceeds weaker for dissipative environments.
Particularly, the slowest decay of the quantum discord emerges when the energy
relaxation time matches the dephasing time.Comment: submitted for publicatio
The Rotating-Wave Approximation: Consistency and Applicability from an Open Quantum System Analysis
We provide an in-depth and thorough treatment of the validity of the
rotating-wave approximation (RWA) in an open quantum system. We find that when
it is introduced after tracing out the environment, all timescales of the open
system are correctly reproduced, but the details of the quantum state may not
be. The RWA made before the trace is more problematic: it results in incorrect
values for environmentally-induced shifts to system frequencies, and the
resulting theory has no Markovian limit. We point out that great care must be
taken when coupling two open systems together under the RWA. Though the RWA can
yield a master equation of Lindblad form similar to what one might get in the
Markovian limit with white noise, the master equation for the two coupled
systems is not a simple combination of the master equation for each system, as
is possible in the Markovian limit. Such a naive combination yields inaccurate
dynamics. To obtain the correct master equation for the composite system a
proper consideration of the non-Markovian dynamics is required.Comment: 17 pages, 0 figures
Frozen and Invariant Quantum Discord under Local Dephasing Noise
In this chapter, we intend to explore and review some remarkable dynamical
properties of quantum discord under various different open quantum system
models. Specifically, our discussion will include several concepts connected to
the phenomena of time invariant and frozen quantum discord. Furthermore, we
will elaborate on the relation of these two phenomena to the non-Markovian
features of the open system dynamics and to the usage of dynamical decoupling
protocols.Comment: 29 pages, 8 figure
Overview on the phenomenon of two-qubit entanglement revivals in classical environments
The occurrence of revivals of quantum entanglement between separated open
quantum systems has been shown not only for dissipative non-Markovian quantum
environments but also for classical environments in absence of back-action.
While the phenomenon is well understood in the first case, the possibility to
retrieve entanglement when the composite quantum system is subject to local
classical noise has generated a debate regarding its interpretation. This
dynamical property of open quantum systems assumes an important role in quantum
information theory from both fundamental and practical perspectives. Hybrid
quantum-classical systems are in fact promising candidates to investigate the
interplay among quantum and classical features and to look for possible control
strategies of a quantum system by means of a classical device. Here we present
an overview on this topic, reporting the most recent theoretical and
experimental results about the revivals of entanglement between two qubits
locally interacting with classical environments. We also review and discuss the
interpretations provided so far to explain this phenomenon, suggesting that
they can be cast under a unified viewpoint.Comment: 16 pages, 9 figures. Chapter written for the upcoming book "Lectures
on general quantum correlations and their applications
The sudden change phenomenon of quantum discord
Even if the parameters determining a system's state are varied smoothly, the
behavior of quantum correlations alike to quantum discord, and of its classical
counterparts, can be very peculiar, with the appearance of non-analyticities in
its rate of change. Here we review this sudden change phenomenon (SCP)
discussing some important points related to it: Its uncovering,
interpretations, and experimental verifications, its use in the context of the
emergence of the pointer basis in a quantum measurement process, its appearance
and universality under Markovian and non-Markovian dynamics, its theoretical
and experimental investigation in some other physical scenarios, and the
related phenomenon of double sudden change of trace distance discord. Several
open questions are identified, and we envisage that in answering them we will
gain significant further insight about the relation between the SCP and the
symmetry-geometric aspects of the quantum state space.Comment: Lectures on General Quantum Correlations and their Applications, F.
F. Fanchini, D. O. Soares Pinto, and G. Adesso (Eds.), Springer (2017), pp
309-33
- …
