282 research outputs found

    Fundamental basis of single-point liquid limit measurement approaches

    Get PDF
    The liquid limit is defined as the point at which a clay’s behaviour changes from liquid to plastic. This transition is in reality gradual, rather than sudden. The definition of when this transition has been crossed must therefore be determined based on some arbitrary criterion. The percussion cup method of determining liquid limit in the manner suggested by Atterberg and subsequently standardised by Casagrande determines liquid limit as the water content at which 25 standard blows are required to cause closure of a standard groove. In order to speed up the determination of the liquid limit, a single-point method is defined in ASTM D4318, and in many other codes, to interpret liquid limit from groove closure at a different numbers of blows by assuming a relationship between water content and the number of blows required for groove closure. These methods differ considerably between different codes of practice currently in use worldwide. This paper examines the procedures for single-point determination of the liquid limit and offers some fundamental explanations that underpin the applicability of these procedures. This paper demonstrates that the variation in single-point liquid limit procedures suggested by various codes of practice can be attributed to the variability of liquid limit devices, rather than to variation in the soils being tested.This is the author's accepted manuscript. The final version is available from Elsevier at http://www.sciencedirect.com/science/article/pii/S0169131714004062?np=

    The undrained strength - liquidity index relationship

    Get PDF
    A database of 641 fall cone tests on 101 soil samples from 12 countries has been analysed to determine the best mathematical relationship linking undrained shear strength with liquidity index. From the database, it is shown that the use of a linear relationship linking liquidity index and the logarithm of undrained shear strength that uses the commonly assumed 100-fold factor increase in strength from the liquid to plastic limit overpredicts the measured data of soil strength. The use of a factor of about 35 for the ratio between the strength at liquid limit and that extrapolated to the plastic limit is shown to be more realistic. Logarithmic liquidity index is examined and found to also correlate strongly with the logarithm of undrained shear strength; however, it is shown that no great statistical improvement is present compared with the semi-logarithmic formulation. When considering data of individual soils a power law fitting is statistically shown to be the preferred mathematical function.The authors gratefully acknowledge Dr Kevin Stone of the University of Brighton for providing a copy of the thesis by B. Kyambadde. Thanks to Professor Malcolm Bolton for his helpful comments. Thanks to Dr Sarah Allen for her help with the translation of the Swedish version of Atterberg’s original paper. The authors also thank all the reviewers of this paper for their insightful comments and helpful suggestions.This is the author accepted manuscript, which can also be found on the NRC Research Press website here: http://www.nrcresearchpress.com/doi/abs/10.1139/cgj-2013-0169#.U7awT_ldXH

    Accuracy of distributed optical fiber temperature sensing for use in leak detection of subsea pipelines

    Get PDF
    Accurate and rapid detection of leaks is important for subsea oil pipelines to minimize environmental risks and operational/repair costs. Temperature-sensing optical fiber cables can provide economic, near real-time sensing of leaks in subsea oil pipeline networks. By employing optical time domain reflectometry and detecting the Brillouin scattered components from a laser source, the temperature gradients can be detected at any location along an optical fiber cable attached to the oil pipeline. The feasibility of such technology has been established in the literature along with a case study on a land-based pipeline. In this paper the accuracy of an optical fiber-based temperature sensing system is investigated. A mathematical model that simulates the process of temperature sensing is developed and the results are presented. An experimental investigation is carried out with two different laboratory setups to establish the spatial resolution and accuracy of the optical fiber cable detection system, and the experimental results are compared with predictions from the theoretical model. Based on these comparisons it has been established that the optical fiber cable detection system is capable of providing an accurate and rapid assessment of the location of a leak along a subsea pipeline. Furthermore, the sensing system can be used to give an indication of the scale of the oil leak using the temperature gradients detected by the system.The first author would like to acknowledge the support received under the UROP program from the Centre for Smart Infrastructure and Construction (CSIC) at the Department of Engineering, University of Cambridge.This is the accepted manuscript. The final version is available from ASCE at http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29PS.1949-1204.0000189

    A new macro-element model encapsulating the dynamic moment–rotation behaviour of raft foundations

    Get PDF
    The interaction of shallow foundations with the underlying soil during dynamic loading can have both positive and negative effects on the behaviour of the superstructure. Although the negative impacts are generally considered within design codes, seldom is design performed in such a way as to maximise the potential beneficial characteristics. This is, in part, due to the complexity of modelling the soil–structure interaction. Using the data from dynamic centrifuge testing of raft foundations on dry sand, a simple moment–rotation macro-element model has been developed, which has been calibrated and validated against the experimental data. For the prototype tested, the model is capable of accurately predicting the underlying moment–rotation backbone shape and energy dissipation during cyclic loading. Utilising this model within a finite-element model of the structure could potentially allow a coupled analysis of the full soil–foundation–structure system's seismic response in a simplified manner compared to other methods proposed in literature. This permits the beneficial soil–structure interaction characteristics, such as the dissipation of seismic energy, to be reliably included in the design process, resulting in more efficient, cost-effective and safe designs. In this paper the derivation of the model is presented, including details of the calibration process. In addition, an appraisal of the likely resultant error of the model prediction is presented and visual examples of how well the model mimics the experimental data are provided. The authors would like acknowledge the collaborative and financial support received through the European Community’s Seventh Framework programme (FP7/2007-2013) under grant agreement number 227887 (SERIES – Seismic Engineering Research Infrastructures for European Synergies).This is the accepted manuscript. The final published version is available at http://www.icevirtuallibrary.com/content/article/10.1680/geot.SIP.15.P.020
    • …
    corecore