2,283 research outputs found
Detection of False Data Injection Attacks in Smart Grid under Colored Gaussian Noise
In this paper, we consider the problems of state estimation and false data
injection detection in smart grid when the measurements are corrupted by
colored Gaussian noise. By modeling the noise with the autoregressive process,
we estimate the state of the power transmission networks and develop a
generalized likelihood ratio test (GLRT) detector for the detection of false
data injection attacks. We show that the conventional approach with the
assumption of Gaussian noise is a special case of the proposed method, and thus
the new approach has more applicability. {The proposed detector is also tested
on an independent component analysis (ICA) based unobservable false data attack
scheme that utilizes similar assumptions of sample observation.} We evaluate
the performance of the proposed state estimator and attack detector on the IEEE
30-bus power system with comparison to conventional Gaussian noise based
detector. The superior performance of {both observable and unobservable false
data attacks} demonstrates the effectiveness of the proposed approach and
indicates a wide application on the power signal processing.Comment: 8 pages, 4 figures in IEEE Conference on Communications and Network
Security (CNS) 201
Direct Aerobic Carbonylation of C(sp2)-H and C(sp3)-H Bonds through Ni/Cu Synergistic Catalysis with DMF as the CO Source
The direct carbonylation of aromatic sp2 and unactivated sp3 C–H bonds of amides was achieved via nickel/copper catalysis under atmospheric O2 with the assistance of a bidentate directing group. The sp2 C–H functionalization showed high regioselectivity and good functional group compatibility. The sp3 C–H functionalization showed high site-selectivity by favoring the C–H bonds of α-methyl groups over those of the α-methylene, β- or γ-methyl groups. Moreover, this reaction showed a predominant preference for functionalizing the α-methyl over α-phenyl group. Mechanistic studies revealed that nickel/copper synergistic catalysis is involved in this process
Cobalt-catalysed site-selective intra- and intermolecular dehydrogenative amination of unactivated sp3 carbons
Cobalt-catalysed sp2 C–H bond functionalization has attracted considerable attention in recent years because of the low cost of cobalt complexes and interesting modes of action in the process. In comparison, much less efforts have been devoted to the sp3 carbons. Here we report the cobalt-catalysed site-selective dehydrogenative cyclization of aliphatic amides via a C–H bond functionalization process on unactivated sp3 carbons with the assistance of a bidentate directing group. This method provides a straightforward synthesis of monocyclic and spiro β- or γ-lactams with good to excellent stereoselectivity and functional group tolerance. In addition, a new procedure has been developed to selectively remove the directing group, which enables the synthesis of free β- or γ-lactam compounds. Furthermore, the first cobalt-catalysed intermolecular dehydrogenative amination of unactivated sp3 carbons is also realized.,
Functionalizing unactivated carbon–hydrogen bonds is challenging, especially when using non-precious metals and dealing with sp3 hybridized carbons. Here, the authors report an intramolecular cobalt catalysed amination of C–H bonds of sp3 carbons, giving access to β- and γ-lactams
Relationship between leaf physiologic traits and canopy color indices during the leaf expansion period in an oak forest
© The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecosphere 6, no. 12 (2015): 1-9, doi:10.1890/ES14-00452.1.Plant phenology has a significant impact on the forest ecosystem carbon balance. Detecting plant phenology by capturing the time-series canopy images through digital camera has become popular in recent years. However, the relationship between color indices derived from camera images and plant physiological characters are elusive during the growing season in temperate ecosystems. We collected continuous images of forest canopy, leaf size, leaf area index (LAI) and leaf chlorophyll measured by a soil plant analysis development (SPAD) analyzer in a northern subtropical oak forest in China. Our results show that (1) the spring peak of color indices, Gcc (Green Chromatic Coordinates) and ExG (Excess Green), was 18 days earlier than the 90% maximum SPAD value; (2) the 90% maximum SPAD value coincided with the change point of Gcc and ExG immediately after their spring peak; and (3) the spring curves of Gcc and ExG before their peaks were highly synchronous with the expansion of leaf size and the development of LAI value. We suggest it needs to be adjusted if camera-derived Gcc or ExG is used as a proxy of chlorophyll or gross primary productivity, and images observation should be complemented with field phenological and physiological information to interpret the physiological meaning of leaf seasonality.This research was funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions in the Discipline of Environmental Science and Engineering at Nanjing Forest University, Changjiang River Delta Urban Forest Ecosystem Research of CFERN (to H. Hu) and Brown University Seed Funds for International Research Projects on the Environment (to J. Tang)
Investigation of Tumor Suppressing Function of CACNA2D3 in Esophageal Squamous Cell Carcinoma.
Background: Deletion of 3p is one of the most frequent genetic alterations in esophageal squamous cell carcinoma (ESCC), suggesting the existence of one or more tumor suppressor genes (TSGs) within these regions. In this study, one TSG, CACNA2D3 at 3p21.1, was characterized. Methods: Expression of CACNA2D3 in ESCCs was tested by quantitative real-time PCR and tissue microarray. The mechanism of CACNA2D3 downregulation was investigated by methylation-specific polymerase chain reaction (MS-PCR). The tumor suppressive function of CACNA2D3 was characterized by both in vitro and in vivo tumorigenic assays, cell migration and invasion assays. Results: CACNA2D3 was frequently downregulated in ESCCs (24/48, 50%), which was significantly associated with promoter methylation and allele loss (P<0.05). Tissue microarray result showed that downregulation of CACNA2D3 was detected in (127/224, 56.7%) ESCCs, which was significantly associated with lymph node metastasis (P = 0.01), TNM staging (P = 0.003) and poor outcome of ESCC patients (P<0.05). Functional studies demonstrated that CACNA2D3 could inhibit tumorigenicity, cell motility and induce apoptosis. Mechanism study found that CACNA2D3 could arrest cell cycle at G1/S checkpoint by increasing expressions of p21 and p53 and decreasing expression of CDK2. In addition, CACNA2D3 could upregulate intracellular free cytosolic Ca2+ and subsequently induce apoptosis. Conclusion: CACNA2D3 is a novel TSG responsible to the 3p21 deletion event and plays a critical suppressing role in the development and progression of ESCC. © 2013 Li et al.link_to_OA_fulltex
Development of a Wearable-Sensor-Based Fall Detection System
Fall detection is a major challenge in the public healthcare domain, especially for the elderly as the decline of their physical fitness, and timely and reliable surveillance is necessary to mitigate the negative effects of falls. This paper develops a novel fall detection system based on a wearable device. The system monitors the movements of human body, recognizes a fall from normal daily activities by an effective quaternion algorithm, and automatically sends request for help to the caregivers with the patient’s location
- …
