29,911 research outputs found
Flavor Changing Higgs Decays in Supersymmetry with Minimal Flavor Violation
We study the flavor changing neutral current decays of the MSSM Higgs bosons
into strange and bottom quarks. We focus on a scenario of minimum flavor
violation here, namely only that induced by the CKM matrix. Taking into account
constraint from , as well as experimental
constraints on the MSSM spectrum, we show that the branching ratio of and combined, for being either one of
the CP even Higgs states, can reach the order - for large
, large , and large . The result illustrates the
significance of minimal flavor violation scenario which can induce competitive
branching fraction for flavor changing Higgs decays. This can be compared with
the previous studies where similar branching fraction has been reported, but
with additional sources of flavor violations in squark mass matrices. We also
discuss some basic features of the flavor violating decays in the generic case.Comment: 16 pages on Revtex, with 5 figures from 10 eps files incorporated;
discussion on issues related more precise calculations elaborated;
proof-edited version to appear in Phys. Lett.
Consumer Responses to Recent BSE Events
Recent bovine spongiform encephalopathy (BSE, a.k.a. mad cow disease) discoveries in Canadian and U.S. beef cattle have garnered significant media attention, which may have changed consumers’ meat-purchasing behavior. Consumer response is hypothesized and tested within a meat demand system in which response is measured using single-period dummy variables, longer-term dummy variables, and media indices that count positive and negative meat-industry articles. Parameters are estimated using retail scanner data, and cross-species price elasticities are calculated. Results suggest that the BSE events negatively impacted ground beef and chuck roasts, while positively impacting center-cut pork chop demand. Dummy variables explained the variation in meat-budget shares better than did media indices.Consumer/Household Economics,
J_AW,WA functions in Passarino-Veltman reduction
In this paper we continue to study a special class of Passarino-Veltman
functions J arising at the reduction of infrared divergent box diagrams. We
describe a procedure of separation of two types of singularities, infrared and
mass singularities, which are absorbed in simple C0 functions. The infrared
divergences of C0's can be regularized then by any method: photon mass,
dimensionally or by the width of an unstable particle. Functions J, in turn,
are represented as certain linear combinations of the standard D0 and C0
Passarino-Veltman functions. The former are free of both types of singularities
and are expressed as explicit and compact linear combinations of logarithms and
dilogarithm functions. We present extensive comparisons of numerical results
with those obtained with the aid of the LoopTools package
A probabilistic analysis of argument cogency
This paper offers a probabilistic treatment of the conditions for argument cogency as endorsed in informal logic: acceptability, relevance, and sufficiency. Treating a natural language argument as a reason-claim-complex, our analysis identifies content features of defeasible argument on which the RSA conditions depend, namely: change in the commitment to the reason, the reason’s sensitivity and selectivity to the claim, one’s prior commitment to the claim, and the contextually determined thresholds of acceptability for reasons and for claims. Results contrast with, and may indeed serve to correct, the informal understanding and applications of the RSA criteria concerning their conceptual dependence, their function as update-thresholds, and their status as obligatory rather than permissive norms, but also show how these formal and informal normative approachs can in fact align
Absolute rate coefficients for photorecombination and electron-impact ionization of magnesium-like iron ions from measurements at a heavy-ion storage ring
Rate coefficients for photorecombination (PR) and cross sections for
electron-impact ionization (EII) of Fe forming Fe and
Fe, respectively, have been measured by employing the electron-ion
merged-beams technique at a heavy-ion storage ring. Rate coefficients for PR
and EII of Fe ions in a plasma are derived from the experimental
measurements. Simple parametrizations of the experimentally derived plasma rate
coefficients are provided for use in the modeling of photoionized and
collisionally ionized plasmas. In the temperature ranges where Fe is
expected to form in such plasmas the latest theoretical rate coefficients of
Altun et al. [Astron. Astrophys. 474, 1051 (2007)] for PR and of Dere [Astron.
Astrophys. 466, 771 (2007)] for EII agree with the experimental results to
within the experimental uncertainties. Common features in the PR and EII
resonance structures are identified and discussed.Comment: 12 pages, 6 figures, 3 tables, submitted for publication to Physical
Review
First-principles study of the optoelectronic properties and photovoltaic absorber layer efficiency of Cu-based chalcogenides
Cu-based chalcogenides are promising materials for thin-film solar cells with
more than 20% measured cell efficiency. Using first-principles calculations
based on density functional theory, the optoelectronic properties of a group of
Cu-based chalcogenides Cu-II-IV-VI is studied. They are then screened
with the aim of identifying potential absorber materials for photovoltaic
applications. The spectroscopic limited maximum efficiency (SLME) introduced by
Yu and Zunger is used as a metric for the screening. After constructing the
current-voltage curve, the maximum spectroscopy dependent power conversion
efficiency is calculated from the maximum power output. The role of the nature
of the band gap, direct or indirect, and also of the absorptivity of the
studied materials on the maximum theoretical power conversion efficiency is
studied. Our results show that Cu-II-GeSe with II=Cd and Hg, and
Cu-II-SnS with II=Cd and Zn have a higher theoretical efficiency
compared to the materials currently used as absorber layer
MSSM Higgs bosons associated with high-pT jets at hadron colliders
The cross section for the production of the lightest neutral Higgs boson in
association with a high-pT hadronic jet, calculated in the framework of the
minimal supersymmetric standard model (MSSM), is presented. The expectations
for the hadronic cross section at the Large Hadron Collider are discussed using
reasonable kinematical cuts. In particular the contributions from superpartner
loops to the cross section and their dependence on the parameters of the MSSM
are investigated and found to be significant. Comparisons show that the
production rate for h0 + jet in the MSSM can differ widely from the
corresponding standard-model prediction.Comment: 20 page
From simplicial Chern-Simons theory to the shadow invariant II
This is the second of a series of papers in which we introduce and study a
rigorous "simplicial" realization of the non-Abelian Chern-Simons path integral
for manifolds M of the form M = Sigma x S1 and arbitrary simply-connected
compact structure groups G. More precisely, we introduce, for general links L
in M, a rigorous simplicial version WLO_{rig}(L) of the corresponding Wilson
loop observable WLO(L) in the so-called "torus gauge" by Blau and Thompson
(Nucl. Phys. B408(2):345-390, 1993). For a simple class of links L we then
evaluate WLO_{rig}(L) explicitly in a non-perturbative way, finding agreement
with Turaev's shadow invariant |L|.Comment: 53 pages, 1 figure. Some minor changes and corrections have been mad
Ferromagnetism in Fe-substituted spinel semiconductor ZnGaO
Motivated by the recent experimental observation of long range ferromagnetic
order at a relatively high temperature of 200K in the Fe-doped ZnGaO
semiconducting spinel, we propose a possible mechanism for the observed
ferromagnetism in this system. We show, supported by band structure
calculations, how a model similar to the double exchange model can be written
down for this system and calculate the ground state phase diagram for the two
cases where Fe is doped either at the tetrahedral position or at the octahedral
position. We find that in both cases such a model can account for a stable
ferromagnetic phase in a wide range of parameter space. We also argue that in
the limit of high Fe concentration at the tetrahedral positions a
description in terms of a two band model is essential. The two orbitals
and the hopping between them play a crucial role in stabilizing the
ferromagnetic phase in this limit. The case when Fe is doped simultaneously at
both the tetrahedral and the octahedral position is also discussed.Comment: 10 pages, 9 figures, added text, J. Phys. Cond. Mat. (to appear
Neutrino-induced deuteron disintegration experiment
Cross sections for the disintegration of the deuteron via neutral-current
(NCD) and charged-current (CCD) interactions with reactor antineutrinos are
measured to be 6.08 +/- 0.77 x 10^(-45) cm-sq and 9.83 +/- 2.04 x 10^(-45)
cm-sq per neutrino, respectively, in excellent agreement with current
calculations. Since the experimental NCD value depends upon the CCD value, if
we use the theoretical value for the CCD reaction, we obtain the improved value
of 5.98 +/- 0.54 x 10^(-45) for the NCD cross section. The neutral-current
reaction allows a unique measurement of the isovector-axial vector coupling
constant in the hadronic weak interaction (beta). In the standard model, this
constant is predicted to be exactly 1, independent of the Weinberg angle. We
measure a value of beta^2 = 1.01 +/- 0.16. Using the above improved value for
the NCD cross section, beta^2 becomes 0.99 +/- 0.10.Comment: 22pages, 9 figure
- …
