153 research outputs found

    Collective atomic recoil motion in short-pulse multi-matter-optical wave mixing

    Full text link
    An analytical perturbation theory of short-pulse, matter-wave superradiant scatterings is presented. We show that Bragg resonant enhancement is incapacitated and both positive and negative order scatterings contribute equally. We further show that propagation gain is small and scattering events primarily occur at the end of the condensate where the generated field has maximum strength, thereby explaining the apparent ``asymmetry" in the scattered components with respect to the condensate center. In addition, the generated field travels near the speed of light in a vacuum, resulting in significant spontaneous emission when the one-photon detuning is not sufficiently large. Finally, we show that when the excitation rate increases, the generated-field front-edge-steepening and peak forward-shifting effects are due to depletion of the ground state matter wave.Comment: This manuscript was submitted for publication in Nov., 200

    Two point correlations of a trapped interacting Bose gas at finite temperature

    Full text link
    We develop a computationally tractable method for calculating correlation functions of the finite temperature trapped Bose gas that includes the effects of s-wave interactions. Our approach uses a classical field method to model the low energy modes and treats the high energy modes using a Hartree-Fock description. We present results of first and second order correlation functions, in position and momentum space, for an experimentally realistic system in the temperature range of 0.6Tc0.6T_c to 1.0Tc1.0T_c. We also characterize the spatial coherence length of the system. Our theory should be applicable in the critical region where experiments are now able to measure first and second order correlations.Comment: 9 pages, 4 figure

    Imaging the phase of an evolving Bose-Einstein condensate wavefunction

    Get PDF
    We demonstrate a spatially resolved autocorrelation measurement with a Bose-Einstein condensate (BEC) and measure the evolution of the spatial profile of its quantum mechanical phase. Upon release of the BEC from the magnetic trap, its phase develops a form that we measure to be quadratic in the spatial coordinate. Our experiments also reveal the effects of the repulsive interaction between two overlapping BEC wavepackets and we measure the small momentum they impart to each other

    Elastic scattering loss of atoms from colliding Bose-Einstein condensate wavepackets

    Full text link
    Bragg diffraction of atoms by light waves has been used to create high momentum components in a Bose-Einstein condensate. Collisions between atoms from two distinct momentum wavepackets cause elastic scattering that can remove a significant fraction of atoms from the wavepackets and cause the formation of a spherical shell of scattered atoms. We develop a slowly varying envelope technique that includes the effects of this loss on the condensate dynamics described by the Gross-Pitaevski equation. Three-dimensional numerical calculations are presented for two experimental situations: passage of a moving daughter condensate through a non-moving parent condensate, and four-wave mixing of matter waves.Comment: Phys. Rev. Lett, in pres
    • …
    corecore