643 research outputs found

    Detection of plant stress through multispectral photography

    Get PDF
    There are no author-identified significant results in this report

    Helicity Dependent and Independent Generalized Parton Distributions of the Nucleon in Lattice QCD

    Full text link
    A complete description of the nucleon structure in terms of generalized parton distributions (GPDs) at twist 2 level requires the measurement/computation of the eight functions H, E, \tilde H, \tilde E, H_T, E_T, \tilde H_T and \tilde E_T, all depending on the three variables x, \xi and t. In this talk, we present and discuss our first steps in the framework of lattice QCD towards this enormous task. Dynamical lattice QCD results for the lowest three Mellin moments of the helicity dependent and independent GPDs are shown in terms of their corresponding generalized form factors. Implications for the transverse coordinate space structure of the nucleon as well as the orbital angular momentum (OAM) contribution of quarks to the nucleon spin are discussed in some detail.Comment: 5 pages, 5 figures, Talk presented by Ph.H. at Electron-Nucleus Scattering VIII, Elba, Italy, June 21-25, 2004; typos corrected, minor change in wording on p.4&

    Transverse Structure of Nucleon Parton Distributions from Lattice QCD

    Full text link
    This work presents the first calculation in lattice QCD of three moments of spin-averaged and spin-polarized generalized parton distributions in the proton. It is shown that the slope of the associated generalized form factors decreases significantly as the moment increases, indicating that the transverse size of the light-cone quark distribution decreases as the momentum fraction of the struck parton increases.Comment: 4 pages, 1 figur

    Quark Contributions to Nucleon Momentum and Spin from Domain Wall fermion calculations

    Full text link
    We report contributions to the nucleon spin and momentum from light quarks calculated using dynamical domain wall fermions with pion masses down to 300 MeV and fine lattice spacing a=0.084 fm. Albeit without disconnected diagrams, we observe that spin and orbital angular momenta of both u and d quarks are opposite, almost canceling in the case of the d quark, which agrees with previous calculations using a mixed quark action. We also present the full momentum dependence of n=2 generalized form factors showing little variation with the pion mass.Comment: 7 pages, 5 figures, NT-LBNL-11-020, MIT-CTP-4323. Presented at the 29th International Symposium on Lattice Field Theory (Lattice 2011), Squaw Valley, California, 10-16 Jul 201

    Calculation of the nucleon axial charge in lattice QCD

    Get PDF
    Protons and neutrons have a rich structure in terms of their constituents, the quarks and gluons. Understanding this structure requires solving Quantum Chromodynamics (QCD). However QCD is extremely complicated, so we must numerically solve the equations of QCD using a method known as lattice QCD. Here we describe a typical lattice QCD calculation by examining our recent computation of the nucleon axial charge.Comment: Prepared for Scientific Discovery through Advanced Computing (SciDAC 2006), Denver, Colorado, June 25-29 200

    Nucleon structure in the chiral regime with domain wall fermions on an improved staggered sea

    Get PDF
    Moments of unpolarized, helicity, and transversity distributions, electromagnetic form factors, and generalized form factors of the nucleon are presented from a preliminary analysis of lattice results using pion masses down to 359 MeV. The twist two matrix elements are calculated using a mixed action of domain wall valence quarks and asqtad staggered sea quarks and are renormalized perturbatively. Several observables are extrapolated to the physical limit using chiral perturbation theory. Results are compared with experimental moments of quark distributions and electromagnetic form factors and phenomenologically determined generalized form factors, and the implications on the transverse structure and spin content of the nucleon are discussed.Comment: Talks of J.W. Negele and D.B. Renner at Lattice 200

    Transverse momentum distributions inside the nucleon from lattice QCD

    Get PDF
    We study transverse momentum dependent parton distribution functions (TMDs) with non-local operators in lattice QCD, using MILC/LHPC lattices. Results obtained with a simplified operator geometry show visible dipole deformations of spin-dependent quark momentum densities.United States. Dept. of Energy (grant DE-FG02-94ER40818

    Transverse momentum dependent quark densities from Lattice QCD

    Get PDF
    We study transverse momentum dependent parton distribution functions (TMDs) with non‐local operators in lattice QCD, using MILC∕LHPC lattices. We discuss the basic concepts of the method, including renormalization of the gauge link. Results obtained with a simplified operator geometry show visible dipole deformations of spin‐dependent quark momentum densities.United States. Dept. of Energy (grant DEFG02- 94ER40818

    Nucleon Electromagnetic Form Factors from Lattice QCD using 2+1 Flavor Domain Wall Fermions on Fine Lattices and Chiral Perturbation Theory

    Full text link
    We present a high-statistics calculation of nucleon electromagnetic form factors in Nf=2+1N_f=2+1 lattice QCD using domain wall quarks on fine lattices, to attain a new level of precision in systematic and statistical errors. Our calculations use 323×6432^3 \times 64 lattices with lattice spacing a=0.084 fm for pion masses of 297, 355, and 403 MeV, and we perform an overdetermined analysis using on the order of 3600 to 7000 measurements to calculate nucleon electric and magnetic form factors up to Q2≈Q^2 \approx 1.05 GeV2^2. Results are shown to be consistent with those obtained using valence domain wall quarks with improved staggered sea quarks, and using coarse domain wall lattices. We determine the isovector Dirac radius r1vr_1^v, Pauli radius r2vr_2^v and anomalous magnetic moment Îșv\kappa_v. We also determine connected contributions to the corresponding isoscalar observables. We extrapolate these observables to the physical pion mass using two different formulations of two-flavor chiral effective field theory at one loop: the heavy baryon Small Scale Expansion (SSE) and covariant baryon chiral perturbation theory. The isovector results and the connected contributions to the isoscalar results are compared with experiment, and the need for calculations at smaller pion masses is discussed.Comment: 44 pages, 40 figure
    • 

    corecore