37 research outputs found

    Chest CT findings of COVID-19-infected patients, are there differences between pediatric and adult patients? A systematic review

    Get PDF
    Background: Purpose of this study was to deliver a report of chest CT findings of COVID-19-infected pediatric and adult patients and to make an age-based comparison. A systematic search was conducted in accordance with PRISMA guidelines to identify relevant studies in the electronic databases of PubMed, Scopus, ProQuest, ScienceDirect, and Web of Sciences from January 1, 2020 to March 27, 2020 using search terms in the titles and abstracts. Based on our inclusion and exclusion criteria, 762 articles were screened. Finally, 15 eligible articles which had adequate data on chest CT findings of COVID-19-infected patients were enrolled in this systematic review. Results: In pediatric patients (15 years old or younger), peripheral distribution was found in 100 of cases, ground glass opacities (GGO) in 55.2, bilateral involvement in 50, halo sign in 50, unilateral involvement in 30, consolidation in 22.2, crazy paving pattern in 20, nodular opacities in 15, pleural effusion in 4.2, lymphadenopathy in none, and normal imaging in 20.8 of cases. On the other hand, in adult patients, bilateral involvement was reported in 76.8, GGO in 68.4, peripheral distribution in 62.2, mixed GGO and consolidation in 48.7, consolidation in 33.7, crazy paving pattern in 27.7, mixed central and peripheral distribution in 25.0, unilateral involvement in 15.2, nodular opacities in 9.2, pleural effusion in 5.5, central distribution of lesions in 5.4, lymphadenopathy in 2.4, and normal imaging in 9.8 of cases. Conclusion: According to the findings of this systematic review, children infected with COVID-19 can present with normal or atypical findings (nodular opacities/unilateral involvement) in chest imaging more frequently than adult patients. Therefore, more caution should be taken to avoid misdiagnosis or missed diagnosis in infected children. Besides, clinical and laboratory findings need to be considered more decision-making for pediatric patients with normal or atypical chest CT scan but high suspicion of COVID-19. © 2020, The Author(s)

    The role of melatonin on doxorubicin-induced cardiotoxicity: A systematic review

    Get PDF
    Purpose: Doxorubicin, as an effective chemotherapeutic drug, is commonly used for combating various solid and hematological tumors. However, doxorubicin-induced cardiotoxicity is considered as a serious adverse effect, and it limits the clinical use of this chemotherapeutic drug. The use of melatonin can lead to a decrease in the cardiotoxic effect induced by doxorubicin. The aim of this review was to evaluate the potential role of melatonin in the prevention of doxorubicin-induced cardiotoxicity. Methods: This review was conducted by a full systematic search strategy based on PRISMA guidelines for the identification of relevant literature in the electronic databases of PubMed, Web of Science, Embase, and Scopus up to January 2019 using search terms in the titles and abstracts. 286 articles were screened in accordance with our inclusion and exclusion criteria. Finally, 28 articles were selected in this systematic review. Results: The findings demonstrated that doxorubicin-treated groups had increased mortality, decreased body weight and heart weight, and increased ascites compared to the control groups; the co-administration of melatonin revealed an opposite pattern compared to the doxorubicin-treated groups. Also, this chemotherapeutic agent can lead to biochemical and histopathological changes; as for most of the cases, these alterations were reversed near to normal levels (control groups) by melatonin co-administration. Melatonin exerts these protection effects through mechanisms of anti-oxidant, anti-apoptosis, anti-inflammatory, and mitochondrial function. Conclusion: The results of this systematic review indicated that co-administration of melatonin ameliorates the doxorubicin-induced cardiotoxicity. © 2019 Elsevier Inc

    The role of melatonin on chemotherapy-induced reproductive toxicity

    Get PDF
    Abstract Objectives Reproductive malfunctions after chemotherapy still are a reason of reducing fertility and need specialized intensive care. The aim of this review was to investigate the effect of melatonin on the reproductive system under threatening with chemotherapeutic drugs. Methods To find the role of melatonin in the reproductive system during chemotherapy, a full systematic literature search was carried out based on Preferred Reporting Items for Systematic Reviews and Meta‐Analyses guidelines in the electronic databases up to 17 April 2017 using search terms in the titles and abstracts. A total of 380 articles are screened according to our inclusion and exclusion criteria. Finally, 18 articles were included in this study. Key findings It has been cleared that melatonin has bilateral effects on reproductive cells. Melatonin protects normal cells via mechanisms, including decrease in oxidative stress, apoptosis, inflammation and modulating mitochondrial function, and sexual hormones. Furthermore, melatonin with antiproliferative properties and direct effects on its receptors improves reproductive injury and function during chemotherapy. On the other hand, melatonin sensitizes the effects of chemotherapeutic drugs and enhances chemotherapy‐induced toxicity in cancerous cells through increasing apoptosis, oxidative stress and mitochondrial malfunction. Conclusions The study provides evidence of the bilateral role of melatonin in the reproductive system during chemotherapy

    LncRNA–miRNA–mRNA Networks of Gastrointestinal Cancers Representing Common and Specific LncRNAs and mRNAs

    Get PDF
    Gastrointestinal (GI) cancers are responsible for approximately half of cancer-related deaths, highlighting the need for the identification of distinct and common features in their clinicopathological characteristics. Long ncRNA (lncRNAs), which are involved in competitive endogenous RNA (ceRNA) networks with critical roles in biological processes, constitute a substantial number of non-coding RNAs. Therefore, our study aimed to investigate the similarities and differences in the ceRNA networks of The Cancer Genome Atlas (TCGA)-GI cancers. We performed a comprehensive bioinformatics analysis of ceRNA networks for TCGA-GI cancers in terms of the deferential mRNA, lncRNA, and miRNA expression levels, ceRNA networks, overall survival analysis, correlation analysis, pathological cancer stages, and gene set enrichment analysis. Our study revealed several common and distinct mRNAs and lncRNAs with prognostic values in these networks. It was specifically noteworthy that MAGI2-AS3 lncRNA was found to be shared in almost all GI cancers. Moreover, the most common shared mRNAs between GI cancers were MEIS1, PPP1R3C, ADAMTSL3, RIPOR2, and MYLK. For each cancer ceRNA network, we found that the expression level of a number of lncRNAs and mRNAs was specific. Furthermore, our study provided compelling evidence that several genes, most notably KDELC1, can act as novel proto-oncogenes in cancers. This, in turn, can highlight their role as new prognostic and therapeutic targets. Moreover, we found cell cycle and extracellular matrix structural constituent as the top shared KEGG and molecular function, respectively, among GI cancers. Our study revealed several known lncRNAs and known and unknown mRNAs in GI cancers with diagnostic and prognostic value

    A systematic review of radiation-induced testicular toxicities following radiotherapy for prostate cancer

    Get PDF
    Background: Prostate cancer is the second most common malignancy in men in the world, and radiotherapy is used as a standard treatment modality for this cancer. Although this treatment modality effectively kills prostate cancerous cells, it unavoidably irradiates the organs/tissues that are away from the treatment site. In this regard, radiation-induced testicular toxicities following prostate radiotherapy can affect sexual function, reproduction, and quality of life in cancer survivors. This review summarizes the available data on testicular exposure to radiation during prostate radiotherapy and the consequences on testicular function. Methods: To illuminate the radiation-induced testicular toxicities following prostate radiotherapy, a systematic search was conducted based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guideline in PubMed, Web of Science, Scopus, Embase, and clinical trials electronic databases up to September 2018. According to a set of prespecified inclusion and exclusion criteria, 31 eligible articles providing data on testicular function following radiotherapy in patients with prostate cancer were included in the study. Results: According to the different radiotherapeutic techniques used for prostate cancer treatment, the total tumor dose and scattered testicular dose values were ranging from 36.25 to 78.00 Gy and 0.06 to 6.48 Gy, respectively. Luteinizing hormone and follicle-stimulating hormone levels after prostate radiotherapy were signi�cantly higher in comparison with the pretreatment levels. Around 60 of the studies showed that testosterone levels after prostate radiotherapy were signi�cantly lower than the pretreatment levels. Furthermore, erectile dysfunction (ED), as an adverse side effect resulting from prostate radiotherapy, was reported and this complication is signi�cantly correlated with lower satisfaction with sexual life. Testicular atrophy following prostate radiotherapy has also been observed and its frequency in patients with prior prostate radiotherapy is 2.5 times more than that in the patients without prior radiotherapy. Conclusion: The data revealed that the scattered dose to testicular tissues during prostate radiotherapy can lead to testicular atrophy, variation of the male sex hormones, and quality of sexual life. © 2019 Wiley Periodicals, Inc

    Involvement of N4BP2L1, PLEKHA4, and BEGAIN genes in breast cancer and muscle cell development

    Get PDF
    Patients with breast cancer show altered expression of genes within the pectoralis major skeletal muscle cells of the breast. Through analyses of The Cancer Genome Atlas (TCGA)-breast cancer (BRCA), we identified three previously uncharacterized putative novel tumor suppressor genes expressed in normal muscle cells, whose expression was downregulated in breast tumors. We found that NEDD4 binding protein 2-like 1 (N4BP2L1), pleckstrin homology domain-containing family A member 4 (PLEKHA4), and brain-enriched guanylate kinase-associated protein (BEGAIN) that are normally highly expressed in breast myoepithelial cells and smooth muscle cells were significantly downregulated in breast tumor tissues of a cohort of 50 patients with this cancer. Our data revealed that the low expression of PLEKHA4 in patients with menopause below 50 years correlated with a higher risk of breast cancer. Moreover, we identified N4BP2L1 and BEGAIN as potential biomarkers of HER2-positive breast cancer. Furthermore, low BEGAIN expression in breast cancer patients with blood fat, heart problems, and diabetes correlated with a higher risk of this cancer. In addition, protein and RNA expression analysis of TCGA-BRCA revealed N4BP2L1 as a promising diagnostic protein biomarker in breast cancer. In addition, the in silico data of scRNA-seq showed high expression of these genes in several cell types of normal breast tissue, including breast myoepithelial cells and smooth muscle cells. Thus, our results suggest their possible tumor-suppressive function in breast cancer and muscle development

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions. Funding: Bill & Melinda Gates Foundation

    The role of curcumin/curcuminoids during gastric cancer chemotherapy: A systematic review of non-clinical study

    No full text
    Aims: Chemotherapy is an effective therapeutic modality which is commonly used for battling various cancers. However, several side effects induced by chemotherapeutic drugs would limit their clinical use. The present systematic review aims to evaluate the role of curcumin/curcuminoids co-administration during gastric cancer chemotherapy. Methods: This systematic review was done according to PRISMA guidelines and a full systematic search in the electronic databases up to May 2020 using search terms in the titles and abstracts for the identification of relevant literature. 279 articles were found in electronic databases and 175 articles screened by title and abstract. Finally, 13 articles were included in this systematic review according to our inclusion and exclusion criteria. Key findings: The findings indicated that gastric cancer chemotherapy induces cytotoxicity effects in various ways including a decrease of cell viability, colony formation, metastasis, tumor growth, and weight, as well as elevation of apoptosis pathway, oxidative stress pathway compared to the control group. Co-administration of curcumin/curcuminoids with chemotherapy synergistically increased the effects of anti-cancer chemotherapy compared to the group solo treated with chemotherapeutic agents. Also, in chemoresistance gastric cancer cells, co-administration of curcumin reduced chemoresistance mainly through the reduction of NF-κB activation and elevation of apoptosis. Significance: According to the findings, the use of curcumin/curcuminoids during gastric cancer chemotherapy has chemosensitizing effects, and also it can reduce chemoresistance in gastric cancer. © 202

    Regulation of tumor angiogenesis by microRNAs: State of the art

    No full text
    MicroRNAs (miRNAs, miRs) are small (21�25 nucleotides) endogenous and noncoding RNAs involved in many cellular processes such as apoptosis, development, proliferation, and differentiation via binding to the 3�-untranslated region of the target mRNA and inhibiting its translation. Angiogenesis is a hallmark of cancer, which provides oxygen and nutrition for tumor growth while removing deposits and wastes from the tumor microenvironment. There are many angiogenesis stimulators, among which vascular endothelial growth factor (VEGF) is the most well known. VEGF has three tyrosine kinase receptors, which, following VEGF binding, initiate proliferation, invasion, migration, and angiogenesis of endothelial cells in the tumor environment. One of the tumor microenvironment conditions that induce angiogenesis through increasing VEGF and its receptors expression is hypoxia. Several miRNAs have been identified that affect different targets in the tumor angiogenesis pathway. Most of these miRNAs affect VEGF and its tyrosine kinase receptors expression downstream of the hypoxia-inducible Factor 1 (HIF-1). This review focuses on tumor angiogenesis regulation by miRNAs and the mechanism underlying this regulation. © 2018 Wiley Periodicals, Inc
    corecore