156 research outputs found
Recommended from our members
The Long Term Temperature Variation in the Lunar Subsurface
Introduction: Lunar surface heat flow values were measured directly during the Apollo missions. These experiments were carried out on Apollo 15 and 17 for about six years between July 7, 1971 and September 30, 1977. The heat flow values derived from these two measurement sites were 21 mW/m2 and 14 mW/m2 respectively [1]. Langseth et al. concluded the repre-sentative global lunar heat flow to be around 18 mW/m2 based on approximately the first 3 years of data until the end of the 1974 (see Figure 1).
Recently, Saito et al. (2006) succeeded in archiving the heat flow data from March 1 1976 until September 30th 1977 [2]. These data are very useful for identify-ing this very long-term variation because we could extend the period of data almost by a factor of two (from 3 years to 6 years) compared to the data ar-chived previously. Because an anomaly had occurred on April 28th, 1976 on the Apollo 15 experiment, the data of Apollo 15 could not be expanded. Therefore, the data obtained by Apollo 17 were used for long term analysis
Recommended from our members
Derivation of globally averaged lunar heat flow from the local heat flow values and the Thorium distribution at the surface: expected improvement by the LUNAR-A Mission
The relationship between the Th abundance and the heat flow data of the Apollo sites and the LUANR-A sites, where the Th concentrations are in the wide range from 1 ppm to 6 ppm, will allow for a more precise estimation of the averaged heat flow value
Recommended from our members
Lost Apollo heat flow data suggest a different lunar bulk composition
Lunar surface heat flow values were measured on the Apollo missions between 1971 and 1977. However, the late-term data have been lost. We succeeded in archiving the data after March 1, 1976. We will introduce the new set of archived data
Recommended from our members
Re-Analysis of HFT Data Using the Apollo Lunar Surface Gravimeter Data
Introduction: The Apollo Passive Seismic Experiment (PSE) was carried out on Apollo 12, 14, 15 and 16. Network observations of four seismic stations were performed for five years from 1972 to 1977. The PSE was a successful mission that informed us of the lunar crustal thickness and seismic velocity structure of the Moon from direct observations of the lunar interior (e.g. [1]). However, the paucity of seismic stations and the limited number of usable seismic events have been a major problem of lunar seismology. An additional observation point enables us to expand the network and the observable area will expand accordingly. Using a data set called the Work Tape, Kawamura et al. (2008) [2] showed that the Lunar Surface Gravimeter (LSG) on Apollo 17 functioned as a seismograph.
With this additional seismic station, we tried the first seismic analysis using the LSG data
Recommended from our members
Thermal in situ measurements in the Lunar Regolith using the LUNAR-A penetrators: an outline of data reduction methods
For determining the lunar heat flow two parameters need to be measured: The thermal gradient and the thermal conductivity of the regolith. Methods for inferring these quantities from in situ measurements using the LUNAR-A penetrators will be presented
Recommended from our members
The Lunar Surface Gravimeter as a Lunar Seismograph
Introduction: The primary objective for the Lunar Surface Gravimeter (LSG) on Apollo 17 was to search for gravitational waves, but it failed in detecting them [1]. When the instrument was deployed on the Moon, the sensor beam could not be balanced in the proper equilibrium position. Consequently, the LSG was not able to function as originally designed. Lauderdale and Eichelman (1974) [1] concluded that “no provision has been made to supply data from the experiment to the National Space Science Data Center.” However, it was reported in Giganti et al. (1977) [2] that though they had not detected gravitational waves, after a series of reconfigurations the beam was recentered and the LSG gathered useful data. Besides the observation of gravitational waves, the LSG was also designed to observe seismic signals and tidal deformations [3]. According to Giganti et al. (1977) [2] LSG’s sensitivity covered the frequency range from 1~16Hz (Fig.1). There are several types of moonquakes reported, deep moonquakes, meteorite impacts, and high frequency teleseismic (HFT). Each of the moonquakes is known to have a resonant frequency around 1Hz and in addition, HFT has a predominant frequency around 10 Hz [4]. Therefore it is likely that the LSG was detecting the seismic events on the Moon. However, the LSG data have not been analyzed from a seismological point of view
Recommended from our members
In situ lunar heat flow experiment using the LUNAR-A penetrator
An in situ lunar heat flow measurement is planned using the Japanese Lunar-A penetrators. The temperature gradient of the regolith is expected to be obtained within 12% error
Recommended from our members
Evidence for Recent Wet-Based Crater Glaciation in Tempe Terra, Mars.
[Introduction]
Mars’ mid-latitudes host abundant putative debris-covered water-ice glaciers (viscous flow features; VFF). Eskers emerging from 110-150 Myr-old VFF in Phlegra Montes and Tempe Terra provide evidence for rare occurences of past, localized basal melting of their parent VFF, despite the cold climates of the late Amazonian (see this conf.). Eskers are sinuous ridges comprising glaciofluvial sediment deposited by meltwater flowing through tunnels within glacial ice.
Here, we describe a population of sinuous ridges emerging from VFF in an unnamed ~45 km-diameter crater (38.47 N, 72.43 W) in Tempe Terra, ~600 km from the VFF-linked esker identified by Butcher et al. We consider two working hypotheses for the formation of the sinuous ridges; that they are either (1) eskers formed by melting of the glaciers from which they emerge, or (2) topographically inverted fluvial channels which formed prior to glaciation of the crater. We present observations from preliminary geomorphic mapping of the crater to start to test those hypotheses
Recommended from our members
Glacier-Linked Eskers on Mars: Environments of Recent Wet-Based Glaciation From Numerical Models
Recommended from our members
MoonLITE – Technological feasibility of the penetrator concept
Introduction: While the surface missions to the Moon of the 1960s and 1970s achieved a great deal, scientifically a great deal was also left unresolved. The recent plethora of lunar missions (flown or proposed) reflects resurgence in interest in the Moon, not only in its own right, but also as a record of the formation of the Earth-Moon System and the interplanetary environment at 1 AU. Results from orbiter missions have indicated the possible presense of ice within permanently shaded craters at the lunar poles [1] – a situation that, if confirmed, will have profound impacts on lunar exploration
- …
