124 research outputs found
Recommended from our members
Identification of genomic loci associated with resting heart rate and shared genetic predictors with all-cause mortality
Resting heart rate is a heritable trait correlated with life span. Little is known about the genetic contribution to resting heart rate and its relationship with mortality. We performed a genome-wide association discovery and replication analysis starting with 19.9 million genetic variants and studying up to 265,046 individuals to identify 64 loci associated with resting heart rate (P < 5 × 10); 46 of these were novel. We then used the genetic variants identified to study the association between resting heart rate and all-cause mortality. We observed that a genetically predicted resting heart rate increase of 5 beats per minute was associated with a 20% increase in mortality risk (hazard ratio 1.20, 95% confidence interval 1.11-1.28, P = 8.20 × 10) translating to a reduction in life expectancy of 2.9 years for males and 2.6 years for females. Our findings provide evidence for shared genetic predictors of resting heart rate and all-cause mortality.This research was conducted using the UK Biobank Resource. This project is supported by the Netherlands organization for health research and development (ZonMw grant 90.700.441). S.B. is supported by the Wellcome Trust (grant 100114). P.B.M. acknowledges support from the NIHR Cardiovascular Biomedical Research Unit at Barts and the London School of Medicine and Dentistry, Queen Mary University of London. N.V. is supported by Netherlands Heart Institute and Marie Sklodowska-Curie Global Fellowship (grant 661395)
Duck Migration and Past Influenza A (H5N1) Outbreak Areas
International audienc
Genomic analysis reveals selection for Asian genes in European pigs following human-mediated introgression
The independent domestication of local wild boar populations in Asia and Europe about 10,000 years ago led to distinct European and Asian pig breeds, each with very different phenotypic characteristics. During the Industrial Revolution, Chinese breeds were imported to Europe to improve commercial traits in European breeds. Here we demonstrate the presence of introgressed Asian haplotypes in European domestic pigs and selection signatures on some loci in these regions, using whole genome sequence data. The introgression signatures are widespread and the Asian haplotypes are rarely fixed. The Asian introgressed haplotypes are associated with regions harbouring genes involved in meat quality, development and fertility. We identify Asian-derived non-synonymous mutations in the AHR gene that associate with increased litter size in multiple European commercial lines. These findings demonstrate that increased fertility was an important breeding goal for early nineteenth century pig farmers, and that Asian variants of genes related to this trait were preferentially selected during the development of modern European pig breeds
Deletions at 14q in malignant mesothelioma detected by microsatellite marker analysis
Previous molecular cytogenetic studies by comparative genomic hybridization (CGH) on primary tumours of human malignant mesothelioma have revealed that loss of genetic material at chromosome 14q is one of the most frequently occurring aberrations. Here we further verify the frequency and pattern of deletions at 14q in mesothelioma. A high-resolution deletion mapping analysis of 23 microsatellite markers was performed on 18 primary mesothelioma tumours. Eight of these had previously been analysed by CGH. Loss of heterozygosity or allelic imbalance with at least one marker was detected in ten of 18 tumours (56%). Partial deletions of varying lengths were more common than loss of all informative markers, which occurred in only one tumour. The highest number of tumours with deletions at a specific marker was detected at 14q11.1–q12 with markers D14S283 (five tumours), D14S972 (seven tumours) and D14S64 (five tumours) and at 14q23–q24 with markers D14S258 (five tumours), D14S77 (five tumours) and D14S284 (six tumours). We conclude from these data that genomic deletions at 14q are more common than previously reported in mesothelioma. Furthermore, confirmation of previous CGH results was obtained in all tumours but one. This tumour showed deletions by allelotyping, but did not show any DNA copy number change at 14q by CGH. Although the number of tumours allelotyped was small and the deletion pattern was complex, 14q11.1–q12 and 14q23–q24 were found to be the most involved regions in deletions. These regions provide a good basis for further molecular analyses and may highlight chromosomal locations of tumour suppressor genes that could be important in the tumorigenesis of malignant mesothelioma. © 1999 Cancer Research Campaig
Genetic insights into resting heart rate and its role in cardiovascular disease
Resting heart rate is associated with cardiovascular diseases and mortality in observational and Mendelian randomization studies. The aims of this study are to extend the number of resting heart rate associated genetic variants and to obtain further insights in resting heart rate biology and its clinical consequences. A genome-wide meta-analysis of 100 studies in up to 835,465 individuals reveals 493 independent genetic variants in 352 loci, including 68 genetic variants outside previously identified resting heart rate associated loci. We prioritize 670 genes and in silico annotations point to their enrichment in cardiomyocytes and provide insights in their ECG signature. Two-sample Mendelian randomization analyses indicate that higher genetically predicted resting heart rate increases risk of dilated cardiomyopathy, but decreases risk of developing atrial fibrillation, ischemic stroke, and cardio-embolic stroke. We do not find evidence for a linear or non-linear genetic association between resting heart rate and all-cause mortality in contrast to our previous Mendelian randomization study. Systematic alteration of key differences between the current and previous Mendelian randomization study indicates that the most likely cause of the discrepancy between these studies arises from false positive findings in previous one-sample MR analyses caused by weak-instrument bias at lower P-value thresholds. The results extend our understanding of resting heart rate biology and give additional insights in its role in cardiovascular disease development.</p
Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human.
Neuronal migration disorders such as lissencephaly and subcortical band heterotopia are associated with epilepsy and intellectual disability. DCX, PAFAH1B1 and TUBA1A are mutated in these disorders; however, corresponding mouse mutants do not show heterotopic neurons in the neocortex. In contrast, spontaneously arisen HeCo mice display this phenotype, and our study revealed that misplaced apical progenitors contribute to heterotopia formation. While HeCo neurons migrated at the same speed as wild type, abnormally distributed dividing progenitors were found throughout the cortical wall from embryonic day 13. We identified Eml1, encoding a microtubule-associated protein, as the gene mutated in HeCo mice. Full-length transcripts were lacking as a result of a retrotransposon insertion in an intron. Eml1 knockdown mimicked the HeCo progenitor phenotype and reexpression rescued it. We further found EML1 to be mutated in ribbon-like heterotopia in humans. Our data link abnormal spindle orientations, ectopic progenitors and severe heterotopia in mouse and human
Evidence of Infection by H5N2 Highly Pathogenic Avian Influenza Viruses in Healthy Wild Waterfowl
The potential existence of a wild bird reservoir for highly pathogenic avian influenza (HPAI) has been recently questioned by the spread and the persisting circulation of H5N1 HPAI viruses, responsible for concurrent outbreaks in migratory and domestic birds over Asia, Europe, and Africa. During a large-scale surveillance programme over Eastern Europe, the Middle East, and Africa, we detected avian influenza viruses of H5N2 subtype with a highly pathogenic (HP) viral genotype in healthy birds of two wild waterfowl species sampled in Nigeria. We monitored the survival and regional movements of one of the infected birds through satellite telemetry, providing a rare evidence of a non-lethal natural infection by an HP viral genotype in wild birds. Phylogenetic analysis of the H5N2 viruses revealed close genetic relationships with H5 viruses of low pathogenicity circulating in Eurasian wild and domestic ducks. In addition, genetic analysis did not reveal known gallinaceous poultry adaptive mutations, suggesting that the emergence of HP strains could have taken place in either wild or domestic ducks or in non-gallinaceous species. The presence of coexisting but genetically distinguishable avian influenza viruses with an HP viral genotype in two cohabiting species of wild waterfowl, with evidence of non-lethal infection at least in one species and without evidence of prior extensive circulation of the virus in domestic poultry, suggest that some strains with a potential high pathogenicity for poultry could be maintained in a community of wild waterfowl
Ecological character displacement in the face of gene flow: Evidence from two species of nightingales
<p>Abstract</p> <p>Background</p> <p>Ecological character displacement is a process of phenotypic differentiation of sympatric populations caused by interspecific competition. Such differentiation could facilitate speciation by enhancing reproductive isolation between incipient species, although empirical evidence for it at early stages of divergence when gene flow still occurs between the species is relatively scarce. Here we studied patterns of morphological variation in sympatric and allopatric populations of two hybridizing species of birds, the Common Nightingale (<it>Luscinia megarhynchos</it>) and the Thrush Nightingale (<it>L. luscinia</it>).</p> <p>Results</p> <p>We conducted principal component (PC) analysis of morphological traits and found that nightingale species converged in overall body size (PC1) and diverged in relative bill size (PC3) in sympatry. Closer analysis of morphological variation along geographical gradients revealed that the convergence in body size can be attributed largely to increasing body size with increasing latitude, a phenomenon known as Bergmann's rule. In contrast, interspecific interactions contributed significantly to the observed divergence in relative bill size, even after controlling for the effects of geographical gradients. We suggest that the divergence in bill size most likely reflects segregation of feeding niches between the species in sympatry.</p> <p>Conclusions</p> <p>Our results suggest that interspecific competition for food resources can drive species divergence even in the face of ongoing hybridization. Such divergence may enhance reproductive isolation between the species and thus contribute to speciation.</p
Cytogenetic and Molecular Predictors of Outcome in Acute Lymphocytic Leukemia: Recent Developments
During the last decade a tremendous technologic progress based on genome-wide profiling of genetic aberrations, structural DNA alterations, and sequence variations has allowed a better understanding of the molecular basis of pediatric and adult B/T- acute lymphoblastic leukemia (ALL), contributing to a better recognition of the biological heterogeneity of ALL and to a more precise definition of risk factors. Importantly, these advances identified novel potential targets for therapeutic intervention. This review will be focused on the cytogenetic/molecular advances in pediatric and adult ALL based on recently published articles
- …