2,592 research outputs found

    The Hagedorn temperature Revisited

    Full text link
    The Hagedorn temperature, T_H is determined from the number of hadronic resonances including all mesons and baryons. This leads to a stable result T_H = 174 MeV consistent with the critical and the chemical freeze-out temperatures at zero chemical potential. We use this result to calculate the speed of sound and other thermodynamic quantities in the resonance hadron gas model for a wide range of baryon chemical potentials following the chemical freeze-out curve. We compare some of our results to those obtained previously in other papers.Comment: 13 pages, 4 figure

    Energy and system size dependence of chemical freeze-out in relativistic nuclear collisions

    Get PDF
    We present a detailed study of chemical freeze-out in p-p, C-C, Si-Si and Pb-Pb collisions at beam momenta of 158A GeV as well as Pb-Pb collisions at beam momenta of 20A, 30A, 40A and 80A GeV. By analyzing hadronic multiplicities within the statistical hadronization model, we have studied the parameters of the source as a function of the number of the participating nucleons and the beam energy. We observe a nice smooth behaviour of temperature, baryon chemical potential and strangeness under-saturation parameter as a function of energy and nucleus size. Interpolating formulas are provided which allow to predict the chemical freeze-out parameters in central collisions at centre-of-mass energies > 4.5 GeV and for any colliding ions. Specific discrepancies between data and model emerge in particle ratios in Pb-Pb collisions at SPS between 20A and 40A GeV of beam energy which cannot be accounted for in the considered model schemes.Comment: 22 pages, 10 figures. References added and updated. Table correcte

    N=(1,1) super Yang--Mills theory in 1+1 dimensions at finite temperature

    Full text link
    We present a formulation of N=(1,1) super Yang-Mills theory in 1+1 dimensions at finite temperature. The partition function is constructed by finding a numerical approximation to the entire spectrum. We solve numerically for the spectrum using Supersymmetric Discrete Light-Cone Quantization (SDLCQ) in the large-N_c approximation and calculate the density of states. We find that the density of states grows exponentially and the theory has a Hagedorn temperature, which we extract. We find that the Hagedorn temperature at infinite resolution is slightly less than one in units of (g^(2) N_c/pi)^(1/2). We use the density of states to also calculate a standard set of thermodynamic functions below the Hagedorn temperature. In this temperature range, we find that the thermodynamics is dominated by the massless states of the theory.Comment: 16 pages, 8 eps figures, LaTe

    Avoided crossings in mesoscopic systems: electron propagation on a non-uniform magnetic cylinder

    Full text link
    We consider an electron constrained to move on a surface with revolution symmetry in the presence of a constant magnetic field BB parallel to the surface axis. Depending on BB and the surface geometry the transverse part of the spectrum typically exhibits many crossings which change to avoided crossings if a weak symmetry breaking interaction is introduced. We study the effect of such perturbations on the quantum propagation. This problem admits a natural reformulation to which tools from molecular dynamics can be applied. In turn, this leads to the study of a perturbation theory for the time dependent Born-Oppenheimer approximation

    Semiclassical (QFT) and Quantum (String) Rotating Black Holes and their Evaporation: New Results

    Full text link
    Combination of both quantum field theory (QFT) and string theory in curved backgrounds in a consistent framework, the string analogue model, allows us to provide a full picture of the Kerr-Newman black hole and its evaporation going beyond the current picture. We compute the quantum emission cross section of strings by a Kerr-Newmann black hole (KNbh). It shows the black hole emission at the Hawking temperature T_{sem} in the early evaporation and the new string emission featuring a Hagedorn transition into a string state of temperature T_ s at the last stages. New bounds on the angular momentum J and charge Q emerge in the quantum string regime. The last state of evaporation of a semiclassical KNbh is a string state of temperature T_s, mass M_s, J = 0 = Q, decaying as a quantum string into all kinds of particles.(There is naturally, no loss of information, (no paradox at all)). We compute the microscopic string entropy S_s(m, j) of mass m and spin mode j. (Besides the usual transition at T_s), we find for high j, (extremal string states) a new phase transition at a temperature T_{sj} higher than T_s. We find a new formula for the Kerr black hole entropy S_{sem}, as a function of the usual Bekenstein-Hawking entropy . For high angular momentum, (extremal J = GM^2/c), a gravitational phase transition operates and the whole entropy S_{sem} is drastically different from the Bekenstein-Hawking entropy. This new extremal black hole transition occurs at a temperature T_{sem J} higher than the Hawking temperature T_{sem}.Comment: New articl

    High Sensitivity Torsion Balance Tests for LISA Proof Mass Modeling

    Get PDF
    We have built a highly sensitive torsion balance to investigate small forces between closely spaced gold coated surfaces. Such forces will occur between the LISA proof mass and its housing. These forces are not well understood and experimental investigations are imperative. We describe our torsion balance and present the noise of the system. A significant contribution to the LISA noise budget at low frequencies is the fluctuation in the surface potential difference between the proof mass and its housing. We present first results of these measurements with our apparatus.Comment: 6th International LISA Symposiu

    Charge Management for Gravitational Wave Observatories using UV LEDs

    Full text link
    Accumulation of electrical charge on the end mirrors of gravitational wave observatories, such as the space-based LISA mission and ground-based LIGO detectors, can become a source of noise limiting the sensitivity of such detectors through electronic couplings to nearby surfaces. Torsion balances provide an ideal means for testing gravitational wave technologies due to their high sensitivity to small forces. Our torsion pendulum apparatus consists of a movable Au-coated Cu plate brought near a Au-coated Si plate pendulum suspended from a non-conducting quartz fiber. A UV LED located near the pendulum photoejects electrons from the surface, and a UV LED driven electron gun directs photoelectrons towards the pendulum surface. We have demonstrated both charging and discharging of the pendulum with equivalent charging rates of \sim105e/s10^5 e/\mathrm{s}, as well as spectral measurements of the pendulum charge resulting in a white noise level equivalent to 3×105e/Hz3\times10^5 e/\sqrt{Hz}.Comment: 5 pages, submitted to PR

    Finite Black Hole Entropy and String Theory

    Get PDF
    An accelerating observer sees a thermal bath of radiation at the Hawking temperature which is proportional to the acceleration. Also, in string theory there is a Hagedorn temperature beyond which one cannot go without an infinite amount of energy. Several authors have shown that in the context of Hawking radiation a limiting temperature for string theory leads to a limiting acceleration, which for a black hole implies a minimum distance from the horizon for an observer to remain stationary. We argue that this effectively introduces a cutoff in Rindler space or the Schwarzschild geometry inside of which accelerations would exceed this maximum value. Furthermore, this natural cutoff in turn allows one to define a finite entropy for Rindler space or a black hole as all divergences were occurring on the horizon. In all cases if a particular relationship exists between Newton's constant and the string tension then the entropy of the string modes agrees with the Bekenstein-Hawking formula.Comment: 17 pages, 1 figure, Florida Preprint UFIFT-HEP-94-0

    A statistical model analysis of K/πK/\pi fluctuations in heavy ion collisions

    Get PDF
    We briefly describe two statistical hadronization models, based respectively on the presence and absence of light quark chemical equilibrium, used to analyze particle yields in heavy ion collisions. We then try to distinguish between these models using K/πK/\pi fluctuations data. We find that while the non-equilibrium model provides an acceptable description of fluctuations at top SPS and RHIC energies, both models considerably under-estimate fluctuations at low SPS energies.Comment: References updated Poster in QM2006 conference, Shangha
    corecore