321 research outputs found

    Feasibility of Impact-Acoustic Emissions for Detection of Damaged Wheat Kernels

    Get PDF
    Cataloged from PDF version of article.A non-destructive, real time device was developed to detect insect damage, sprout damage, and scab damage in kernels of wheat. Kernels are impacted onto a steel plate and the resulting acoustic signal analyzed to detect damage. The acoustic signal was processed using four different methods: modeling of the signal in the time-domain, computing time-domain signal variances and maximums in short-time windows, analysis of the frequency spectrum magnitudes, and analysis of a derivative spectrum. Features were used as inputs to a stepwise discriminant analysis routine, which selected a small subset of features for accurate classification using a neural network. For a network presented with only insect damaged kernels (IDK) with exit holes and undamaged kernels, 87% of the former and 98% of the latter were correctly classified. It was also possible to distinguish undamaged, IDK, sprout-damaged, and scab-damaged kernels. © 2005 Elsevier Inc. All rights reserved

    Effects of Velocity Correlation on Early Stage of Free Cooling Process of Inelastic Hard Sphere System

    Full text link
    The free cooling process in the inelastic hard sphere system is studied by analysing the data from large scale molecular dynamics simulations on a three dimensional system. The initial energy decay, the velocity distribution function, and the velocity correlation functions are calculated to be compared with theoretical predictions. The energy decay rate in the homogeneous cooling state is slightly but distinctively smaller than that expected from the independent collision assumption. The form of the one particle velocity distribution is found not to be stationary. These contradict to the predictions of the kinetic theory based on the Enskog-Boltzmann equation and suggest that the velocity correlation is already important in the early stage of homogeneous cooling state. The energy decay rate is analysed in terms of the velocity correlation.Comment: 9 pages (figures included). To be published in J. Phys. Soc. Jpn. Vol. 73 No. 1 (2004) Added two references and removed one. Changed the name of T_{L}. Added unit constants in Sec. 5 and

    Hydrodynamic singularities and clustering in a freely cooling inelastic gas

    Full text link
    We employ hydrodynamic equations to follow the clustering instability of a freely cooling dilute gas of inelastically colliding spheres into a well-developed nonlinear regime. We simplify the problem by dealing with a one-dimensional coarse-grained flow. We observe that at a late stage of the instability the shear stress becomes negligibly small, and the gas flows solely by inertia. As a result the flow formally develops a finite time singularity, as the velocity gradient and the gas density diverge at some location. We argue that flow by inertia represents a generic intermediate asymptotic of unstable free cooling of dilute inelastic gases.Comment: 4 pages, 4 figure

    Hyperfine Populations Prior to Muon Capture

    Full text link
    It is shown that the 1S level hyperfine populations prior to muon capture will be statistical when either target or beam are unpolarised independent of the atomic level at which the hyperfine interaction becomes appreciable. This assertion holds in the absence of magnetic transitions during the cascade and is true because of minimal polarisation after atomic capture and selective feeding during the cascade.Comment: (revtex, 6 preprint pages, no figures

    Close-packed floating clusters: granular hydrodynamics beyond the freezing point?

    Full text link
    Monodisperse granular flows often develop regions with hexagonal close packing of particles. We investigate this effect in a system of inelastic hard spheres driven from below by a "thermal" plate. Molecular dynamics simulations show, in a wide range of parameters, a close-packed cluster supported by a low-density region. Surprisingly, the steady-state density profile, including the close-packed cluster part, is well described by a variant of Navier-Stokes granular hydrodynamics (NSGH). We suggest a simple explanation for the success of NSGH beyond the freezing point.Comment: 4 pages, 5 figures. To appear in Phys. Rev. Let

    Granular Rheology in Zero Gravity

    Full text link
    We present an experimental investigation on the rheological behavior of model granular media made of nearly elastic spherical particles. The experiments are performed in a cylindrical Couette geometry and the experimental device is placed inside an airplane undergoing parabolic flights to cancel the effect of gravity. The corresponding curves, shear stress versus shear rate, are presented and a comparison with existing theories is proposed. The quadratic dependence on the shear rate is clearly shown and the behavior as a function of the solid volume fraction of particles exhibits a power law function. It is shown that theoretical predictions overestimate the experiments. We observe, at intermediate volume fractions, the formation of rings of particles regularly spaced along the height of the cell. The differences observed between experimental results and theoretical predictions are discussed and related to the structures formed in the granular medium submitted to the external shear.Comment: 10 pages, 6 figures to be published in Journal of Physics : Condensed Matte

    The Granular Phase Diagram

    Full text link
    The kinetic energy distribution function satisfying the Boltzmann equation is studied analytically and numerically for a system of inelastic hard spheres in the case of binary collisions. Analytically, this function is shown to have a similarity form in the simple cases of uniform or steady-state flows. This determines the region of validity of hydrodynamic description. The latter is used to construct the phase diagram of granular systems, and discriminate between clustering instability and inelastic collapse. The molecular dynamics results support analytical results, but also exhibit a novel fluctuational breakdown of mean-field descriptions.Comment: 15 pages, 4 figure

    Dynamics of Freely Cooling Granular Gases

    Full text link
    We study dynamics of freely cooling granular gases in two-dimensions using large-scale molecular dynamics simulations. We find that for dilute systems the typical kinetic energy decays algebraically with time, E(t) ~ t^{-1}, in the long time limit. Asymptotically, velocity statistics are characterized by a universal Gaussian distribution, in contrast with the exponential high-energy tails characterizing the early homogeneous regime. We show that in the late clustering regime particles move coherently as typical local velocity fluctuations, Delta v, are small compared with the typical velocity, Delta v/v ~ t^{-1/4}. Furthermore, locally averaged shear modes dominate over acoustic modes. The small thermal velocity fluctuations suggest that the system can be heuristically described by Burgers-like equations.Comment: 4 pages, 5 figure

    The song of the dunes as a self-synchronized instrument

    Full text link
    Since Marco Polo (1) it has been known that some sand dunes have the peculiar ability of emitting a loud sound with a well defined frequency, sometimes for several minutes. The origin of this sustained sound has remained mysterious, partly because of its rarity in nature (2). It has been recognized that the sound is not due to the air flow around the dunes but to the motion of an avalanche (3), and not to an acoustic excitation of the grains but to their relative motion (4-7). By comparing several singing dunes and two controlled experiments, one in the laboratory and one in the field, we here demonstrate that the frequency of the sound is the frequency of the relative motion of the sand grains. The sound is produced because some moving grains synchronize their motions. The existence of a velocity threshold in both experiments further shows that this synchronization comes from an acoustic resonance within the flowing layer: if the layer is large enough it creates a resonance cavity in which grains self-synchronize.Comment: minor changes, essentially more references

    On the velocity distributions of the one-dimensional inelastic gas

    Full text link
    We consider the single-particle velocity distribution of a one-dimensional fluid of inelastic particles. Both the freely evolving (cooling) system and the non-equilibrium stationary state obtained in the presence of random forcing are investigated, and special emphasis is paid to the small inelasticity limit. The results are obtained from analytical arguments applied to the Boltzmann equation along with three complementary numerical techniques (Molecular Dynamics, Direct Monte Carlo Simulation Methods and iterative solutions of integro-differential kinetic equations). For the freely cooling fluid, we investigate in detail the scaling properties of the bimodal velocity distribution emerging close to elasticity and calculate the scaling function associated with the distribution function. In the heated steady state, we find that, depending on the inelasticity, the distribution function may display two different stretched exponential tails at large velocities. The inelasticity dependence of the crossover velocity is determined and it is found that the extremely high velocity tail may not be observable at ``experimentally relevant'' inelasticities.Comment: Latex, 14 pages, 12 eps figure
    • …
    corecore