27 research outputs found

    Estimating the bispectrum of the Very Small Array data

    Get PDF
    We estimate the bispectrum of the Very Small Array data from the compact and extended configuration observations released in December 2002, and compare our results to those obtained from Gaussian simulations. There is a slight excess of large bispectrum values for two individual fields, but this does not appear when the fields are combined. Given our expected level of residual point sources, we do not expect these to be the source of the discrepancy. Using the compact configuration data, we put an upper limit of 5400 on the value of f_NL, the non-linear coupling parameter, at 95 per cent confidence. We test our bispectrum estimator using non-Gaussian simulations with a known bispectrum, and recover the input values.Comment: 17 pages, 16 figures, replaced with version accepted by MNRAS. Primordial bispectrum recalculated and figure 11 change

    Searching for non-Gaussianity in the VSA data

    Full text link
    We have tested Very Small Array (VSA) observations of three regions of sky for the presence of non-Gaussianity, using high-order cumulants, Minkowski functionals, a wavelet-based test and a Bayesian joint power spectrum/non-Gaussianity analysis. We find the data from two regions to be consistent with Gaussianity. In the third region, we obtain a 96.7% detection of non-Gaussianity using the wavelet test. We perform simulations to characterise the tests, and conclude that this is consistent with expected residual point source contamination. There is therefore no evidence that this detection is of cosmological origin. Our simulations show that the tests would be sensitive to any residual point sources above the data's source subtraction level of 20 mJy. The tests are also sensitive to cosmic string networks at an rms fluctuation level of 105μK105 \mu K (i.e. equivalent to the best-fit observed value). They are not sensitive to string-induced fluctuations if an equal rms of Gaussian CDM fluctuations is added, thereby reducing the fluctuations due to the strings network to 74μK74 \mu K rms . We especially highlight the usefulness of non-Gaussianity testing in eliminating systematic effects from our data.Comment: Minor corrections; accepted for publication to MNRA

    Cosmological parameter estimation using Very Small Array data out to l=1500

    Get PDF
    We estimate cosmological parameters using data obtained by the Very Small Array (VSA) in its extended configuration, in conjunction with a variety of other CMB data and external priors. Within the flat Λ\LambdaCDM model, we find that the inclusion of high resolution data from the VSA modifies the limits on the cosmological parameters as compared to those suggested by WMAP alone, while still remaining compatible with their estimates. We find that Ωbh2=0.02340.0014+0.0012\Omega_{\rm b}h^2=0.0234^{+0.0012}_{-0.0014}, Ωdmh2=0.1110.016+0.014\Omega_{\rm dm}h^2=0.111^{+0.014}_{-0.016}, h=0.730.05+0.09h=0.73^{+0.09}_{-0.05}, nS=0.970.03+0.06n_{\rm S}=0.97^{+0.06}_{-0.03}, 1010AS=233+710^{10}A_{\rm S}=23^{+7}_{-3} and τ=0.140.07+0.14\tau=0.14^{+0.14}_{-0.07} for WMAP and VSA when no external prior is included.On extending the model to include a running spectral index of density fluctuations, we find that the inclusion of VSA data leads to a negative running at a level of more than 95% confidence (nrun=0.069±0.032n_{\rm run}=-0.069\pm 0.032), something which is not significantly changed by the inclusion of a stringent prior on the Hubble constant. Inclusion of prior information from the 2dF galaxy redshift survey reduces the significance of the result by constraining the value of Ωm\Omega_{\rm m}. We discuss the veracity of this result in the context of various systematic effects and also a broken spectral index model. We also constrain the fraction of neutrinos and find that fν<0.087f_{\nu}< 0.087 at 95% confidence which corresponds to mν<0.32eVm_\nu<0.32{\rm eV} when all neutrino masses are the equal. Finally, we consider the global best fit within a general cosmological model with 12 parameters and find consistency with other analyses available in the literature. The evidence for nrun<0n_{\rm run}<0 is only marginal within this model

    High sensitivity measurements of the CMB power spectrum with the extended Very Small Array

    Full text link
    We present deep Ka-band (ν33\nu \approx 33 GHz) observations of the CMB made with the extended Very Small Array (VSA). This configuration produces a naturally weighted synthesized FWHM beamwidth of 11\sim 11 arcmin which covers an \ell-range of 300 to 1500. On these scales, foreground extragalactic sources can be a major source of contamination to the CMB anisotropy. This problem has been alleviated by identifying sources at 15 GHz with the Ryle Telescope and then monitoring these sources at 33 GHz using a single baseline interferometer co-located with the VSA. Sources with flux densities \gtsim 20 mJy at 33 GHz are subtracted from the data. In addition, we calculate a statistical correction for the small residual contribution from weaker sources that are below the detection limit of the survey. The CMB power spectrum corrected for Galactic foregrounds and extragalactic point sources is presented. A total \ell-range of 150-1500 is achieved by combining the complete extended array data with earlier VSA data in a compact configuration. Our resolution of Δ60\Delta \ell \approx 60 allows the first 3 acoustic peaks to be clearly delineated. The is achieved by using mosaiced observations in 7 regions covering a total area of 82 sq. degrees. There is good agreement with WMAP data up to =700\ell=700 where WMAP data run out of resolution. For higher \ell-values out to =1500\ell = 1500, the agreement in power spectrum amplitudes with other experiments is also very good despite differences in frequency and observing technique.Comment: 16 pages. Accepted in MNRAS (minor revisions

    The CMB power spectrum out to l=1400 measured by the VSA

    Full text link
    We have observed the cosmic microwave background (CMB) in three regions of sky using the Very Small Array (VSA) in an extended configuration with antennas of beamwidth 2 degrees at 34 GHz. Combined with data from previous VSA observations using a more compact array with larger beamwidth, we measure the power spectrum of the primordial CMB anisotropies between angular multipoles l = 160 - 1400. Such measurements at high l are vital for breaking degeneracies in parameter estimation from the CMB power spectrum and other cosmological data. The power spectrum clearly resolves the first three acoustic peaks, shows the expected fall off in power at high l and starts to constrain the position and height of a fourth peak.Comment: 6 pages with 5 figures, MNRAS in press (minor corrections

    Non-Gaussianity in the Very Small Array CMB maps with Smooth-Goodness-of-fit tests

    Full text link
    (Abridged) We have used the Rayner & Best (1989) smooth tests of goodness-of-fit to study the Gaussianity of the Very Small Array (VSA) data. Out of the 41 published VSA individual pointings dedicated to cosmological observations, 37 are found to be consistent with Gaussianity, whereas four pointings show deviations from Gaussianity. In two of them, these deviations can be explained as residual systematic effects of a few visibility points which, when corrected, have a negligible impact on the angular power spectrum. The non-Gaussianity found in the other two (adjacent) pointings seems to be associated to a local deviation of the power spectrum of these fields with respect to the common power spectrum of the complete data set, at angular scales of the third acoustic peak (l = 700-900). No evidence of residual systematics is found in this case, and unsubstracted point sources are not a plausible explanation either. If those visibilities are removed, a cosmological analysis based on this new VSA power spectrum alone shows no differences in the parameter constraints with respect to our published results, except for the physical baryon density, which decreases by 10 percent. Finally, the method has been also used to analyse the VSA observations in the Corona Borealis supercluster region (Genova-Santos et al. 2005), which show a strong decrement which cannot be explained as primordial CMB. Our method finds a clear deviation (99.82%) with respect to Gaussianity in the second-order moment of the distribution, and which can not be explained as systematic effects. A detailed study shows that the non-Gaussianity is produced in scales of l~500, and that this deviation is intrinsic to the data (in the sense that can not be explained in terms of a Gaussian field with a different power spectrum).Comment: 14 pages, 7 figures. Accepted for publication in MNRA
    corecore