27 research outputs found
Recommended from our members
Treatment of Sweet Pepper with Stress Tolerance-Inducing Compounds Alleviates Salinity Stress Oxidative Damage by Mediating the Physio-Biochemical Activities and Antioxidant Systems
Salinity stress occurs due to the accumulation of high levels of salts in soil, which ultimately leads to the impairment of plant growth and crop loss. Stress tolerance-inducing compounds have a remarkable ability to improve growth and minimize the effects of salinity stress without negatively affecting the environment by controlling the physiological and molecular activities in plants. Two pot experiments were carried out in 2017 and 2018 to study the influence of salicylic acid (1 mM), yeast extract (6 g L−1), and proline (10 mM) on the physiological and biochemical parameters of sweet pepper plants under saline conditions (2000 and 4000 ppm). The results showed that salt stress led to decreasing the chlorophyll content, relative water content, and fruit yields, whereas electrolyte leakage, malondialdehyde (MDA), proline concentration, reactive oxygen species (ROS), and the activities of antioxidant enzymes increased in salt-stressed plants. The application of salicylic acid (1 mM), yeast extract (6 g L−1), and proline (10 mM) markedly improved the physiological characteristics and fruit yields of salt-stressed plants compared with untreated stressed plants. A significant reduction in electrolyte leakage, MDA, and ROS was also recorded for all treatments. In conclusion, our results reveal the important role of proline, SA, and yeast extracts in enhancing sweet pepper growth and tolerance to salinity stress via modulation of the physiological parameters and antioxidants machinery. Interestingly, proline proved to be the best treatment.</jats:p
Estimating the bispectrum of the Very Small Array data
We estimate the bispectrum of the Very Small Array data from the compact and
extended configuration observations released in December 2002, and compare our
results to those obtained from Gaussian simulations. There is a slight excess
of large bispectrum values for two individual fields, but this does not appear
when the fields are combined. Given our expected level of residual point
sources, we do not expect these to be the source of the discrepancy. Using the
compact configuration data, we put an upper limit of 5400 on the value of f_NL,
the non-linear coupling parameter, at 95 per cent confidence. We test our
bispectrum estimator using non-Gaussian simulations with a known bispectrum,
and recover the input values.Comment: 17 pages, 16 figures, replaced with version accepted by MNRAS.
Primordial bispectrum recalculated and figure 11 change
Searching for non-Gaussianity in the VSA data
We have tested Very Small Array (VSA) observations of three regions of sky
for the presence of non-Gaussianity, using high-order cumulants, Minkowski
functionals, a wavelet-based test and a Bayesian joint power
spectrum/non-Gaussianity analysis. We find the data from two regions to be
consistent with Gaussianity. In the third region, we obtain a 96.7% detection
of non-Gaussianity using the wavelet test. We perform simulations to
characterise the tests, and conclude that this is consistent with expected
residual point source contamination. There is therefore no evidence that this
detection is of cosmological origin. Our simulations show that the tests would
be sensitive to any residual point sources above the data's source subtraction
level of 20 mJy. The tests are also sensitive to cosmic string networks at an
rms fluctuation level of (i.e. equivalent to the best-fit observed
value). They are not sensitive to string-induced fluctuations if an equal rms
of Gaussian CDM fluctuations is added, thereby reducing the fluctuations due to
the strings network to rms . We especially highlight the usefulness
of non-Gaussianity testing in eliminating systematic effects from our data.Comment: Minor corrections; accepted for publication to MNRA
Cosmological parameter estimation using Very Small Array data out to l=1500
We estimate cosmological parameters using data obtained by the Very Small
Array (VSA) in its extended configuration, in conjunction with a variety of
other CMB data and external priors. Within the flat CDM model, we find
that the inclusion of high resolution data from the VSA modifies the limits on
the cosmological parameters as compared to those suggested by WMAP alone, while
still remaining compatible with their estimates. We find that , , , , and
for WMAP and VSA when no external prior is
included.On extending the model to include a running spectral index of density
fluctuations, we find that the inclusion of VSA data leads to a negative
running at a level of more than 95% confidence (),
something which is not significantly changed by the inclusion of a stringent
prior on the Hubble constant. Inclusion of prior information from the 2dF
galaxy redshift survey reduces the significance of the result by constraining
the value of . We discuss the veracity of this result in the
context of various systematic effects and also a broken spectral index model.
We also constrain the fraction of neutrinos and find that at
95% confidence which corresponds to when all neutrino
masses are the equal. Finally, we consider the global best fit within a general
cosmological model with 12 parameters and find consistency with other analyses
available in the literature. The evidence for is only marginal
within this model
High sensitivity measurements of the CMB power spectrum with the extended Very Small Array
We present deep Ka-band ( GHz) observations of the CMB made
with the extended Very Small Array (VSA). This configuration produces a
naturally weighted synthesized FWHM beamwidth of arcmin which covers
an -range of 300 to 1500. On these scales, foreground extragalactic
sources can be a major source of contamination to the CMB anisotropy. This
problem has been alleviated by identifying sources at 15 GHz with the Ryle
Telescope and then monitoring these sources at 33 GHz using a single baseline
interferometer co-located with the VSA. Sources with flux densities \gtsim 20
mJy at 33 GHz are subtracted from the data. In addition, we calculate a
statistical correction for the small residual contribution from weaker sources
that are below the detection limit of the survey.
The CMB power spectrum corrected for Galactic foregrounds and extragalactic
point sources is presented. A total -range of 150-1500 is achieved by
combining the complete extended array data with earlier VSA data in a compact
configuration. Our resolution of allows the first 3
acoustic peaks to be clearly delineated. The is achieved by using mosaiced
observations in 7 regions covering a total area of 82 sq. degrees. There is
good agreement with WMAP data up to where WMAP data run out of
resolution. For higher -values out to , the agreement in
power spectrum amplitudes with other experiments is also very good despite
differences in frequency and observing technique.Comment: 16 pages. Accepted in MNRAS (minor revisions
The CMB power spectrum out to l=1400 measured by the VSA
We have observed the cosmic microwave background (CMB) in three regions of
sky using the Very Small Array (VSA) in an extended configuration with antennas
of beamwidth 2 degrees at 34 GHz. Combined with data from previous VSA
observations using a more compact array with larger beamwidth, we measure the
power spectrum of the primordial CMB anisotropies between angular multipoles l
= 160 - 1400. Such measurements at high l are vital for breaking degeneracies
in parameter estimation from the CMB power spectrum and other cosmological
data. The power spectrum clearly resolves the first three acoustic peaks, shows
the expected fall off in power at high l and starts to constrain the position
and height of a fourth peak.Comment: 6 pages with 5 figures, MNRAS in press (minor corrections
Non-Gaussianity in the Very Small Array CMB maps with Smooth-Goodness-of-fit tests
(Abridged) We have used the Rayner & Best (1989) smooth tests of
goodness-of-fit to study the Gaussianity of the Very Small Array (VSA) data.
Out of the 41 published VSA individual pointings dedicated to cosmological
observations, 37 are found to be consistent with Gaussianity, whereas four
pointings show deviations from Gaussianity. In two of them, these deviations
can be explained as residual systematic effects of a few visibility points
which, when corrected, have a negligible impact on the angular power spectrum.
The non-Gaussianity found in the other two (adjacent) pointings seems to be
associated to a local deviation of the power spectrum of these fields with
respect to the common power spectrum of the complete data set, at angular
scales of the third acoustic peak (l = 700-900). No evidence of residual
systematics is found in this case, and unsubstracted point sources are not a
plausible explanation either. If those visibilities are removed, a cosmological
analysis based on this new VSA power spectrum alone shows no differences in the
parameter constraints with respect to our published results, except for the
physical baryon density, which decreases by 10 percent. Finally, the method has
been also used to analyse the VSA observations in the Corona Borealis
supercluster region (Genova-Santos et al. 2005), which show a strong decrement
which cannot be explained as primordial CMB. Our method finds a clear deviation
(99.82%) with respect to Gaussianity in the second-order moment of the
distribution, and which can not be explained as systematic effects. A detailed
study shows that the non-Gaussianity is produced in scales of l~500, and that
this deviation is intrinsic to the data (in the sense that can not be explained
in terms of a Gaussian field with a different power spectrum).Comment: 14 pages, 7 figures. Accepted for publication in MNRA