17 research outputs found

    Bulk viscosity in superfluid neutron star cores. III. Effects of Σ\Sigma^- hyperons

    Full text link
    Bulk viscosity of neutron star cores containing hyperons is studied taking into account non-equilibrium weak process n+np+Σn+n \rightleftharpoons p+\Sigma^-. Rapid growth of the bulk viscosity within the neutron star core associated with switching on new reactions (modified Urca process, direct Urca process, hyperon reactions) is analyzed. The suppression of the bulk viscosity by superfluidity of baryons is considered and found out to be very important.Comment: LaTeX, 9 pages, added reference, version accepted by Astron. Astrophy

    Bulk viscosity in superfluid neutron star cores. I. Direct Urca processes in npe\mu matter

    Get PDF
    The bulk viscosity of the neutron star matter due to the direct Urca processes involving nucleons, electrons and muons is studied taking into account possible superfluidity of nucleons in the neutron star cores. The cases of singlet-state pairing or triplet-state pairing (without and with nodes of the superfluid gap at the Fermi surface) of nucleons are considered. It is shown that the superfluidity may strongly reduce the bulk viscosity. The practical expressions for the superfluid reduction factors are obtained. For illustration, the bulk viscosity is calculated for two models of dense matter composed of neutrons, protons,electrons and muons. The presence of muons affects the bulk viscosity due to the direct Urca reactions involving electrons and produces additional comparable contribution due to the direct Urca reactions involving muons. The results can be useful for studying damping of vibrations of neutron stars with superfluid cores.Comment: 14 pages, 7 figures, latex, uses aa.cls, to be published in Astronomy and Astrophysic

    Adiabatic Index of Dense Matter and Damping of Neutron Star Pulsations

    Get PDF
    The adiabatic index Gamma_1 for perturbations of dense matter is studied under various physical conditions which can prevail in neutron star cores. The dependence of Gamma_1 on the composition of matter (in particular, on the presence of hyperons), on the stellar pulsation amplitude, and on the baryon superfluidity is analyzed. Timescales of damping of stellar pulsations are estimated at different compositions, temperatures, and pulsation amplitudes. Damping of pulsations by bulk viscosity in the neutron-star cores can prevent the stars to pulsate with relative amplitudes > (1-15)% (depending on the composition of matter)

    Electron-muon heat conduction in neutron star cores via the exchange of transverse plasmons

    Full text link
    We calculate the thermal conductivity of electrons and muons kappa_{e-mu} produced owing to electromagnetic interactions of charged particles in neutron star cores and show that these interactions are dominated by the exchange of transverse plasmons (via the Landau damping of these plasmons in nonsuperconducting matter and via a specific plasma screening in the presence of proton superconductivity). For normal protons, the Landau damping strongly reduces kappa_{e-mu} and makes it temperature independent. Proton superconductivity suppresses the reduction and restores the Fermi-liquid behavior kappa_{e-mu} ~ 1/T. Comparing with the thermal conductivity of neutrons kappa_n, we obtain kappa_{e-mu}> kappa_n for T>2 GK in normal matter and for any T in superconducting matter with proton critical temperatures T_c>3e9 K. The results are described by simple analytic formulae.Comment: 15 pages, 5 figures, to appear in Phys. Rev.

    Shear viscosity in neutron star cores

    Full text link
    We calculate the shear viscosity η=ηeμ+ηn\eta = \eta_{e\mu}+\eta_{n} in a neutron star core composed of nucleons, electrons and muons (ηeμ\eta_{e\mu} being the electron-muon viscosity, mediated by collisions of electrons and muons with charged particles, and ηn\eta_{n} the neutron viscosity, mediated by neutron-neutron and neutron-proton collisions). Deriving ηeμ\eta_{e\mu}, we take into account the Landau damping in collisions of electrons and muons with charged particles via the exchange of transverse plasmons. It lowers ηeμ\eta_{e\mu} and leads to the non-standard temperature behavior ηeμT5/3\eta_{e\mu}\propto T^{-5/3}. The viscosity ηn\eta_{n} is calculated taking into account that in-medium effects modify nucleon effective masses in dense matter. Both viscosities, ηeμ\eta_{e\mu} and ηn\eta_{n}, can be important, and both are calculated including the effects of proton superfluidity. They are presented in the form valid for any equation of state of nucleon dense matter. We analyze the density and temperature dependence of η\eta for different equations of state in neutron star cores, and compare η\eta with the bulk viscosity in the core and with the shear viscosity in the crust.Comment: 22 pages, 7 figures, Phys. Rev. D., accepted. In v.2 typos and two refs. correcte

    Thermal state of transiently accreting neutron stars

    Get PDF
    We study thermal states of transiently accreting neutron stars (with mean accretion rates M˙1014109\dot{M} \sim 10^{-14}-10^{-9} M_\odot yr1^{-1}) determined by the deep crustal heating of accreted matter sinking into stellar interiors. We formalize a direct correspondence of this problem to the problem of cooling neutron stars. Using a simple toy model we analyze the most important factors which affect the thermal states of accreting stars: a strong superfluidity in the cores of low-mass stars and a fast neutrino emission (in nucleon, pion-condensed, kaon-condensed, or quark phases of dense matter) in the cores of high-mass stars. We briefly compare the results with the observations of soft X-ray transients in quiescence. If the upper limit on the quiescent thermal luminosity of the neutron star in SAX J1808.4-3658 (Campana et al. 2002) is associated with the deep crustal heating, it favors the model of nucleon neutron-star cores with switched-on direct Urca process.Comment: 7 pages, 2 figures, revised after the referee remarks, to appear in A&

    Bulk viscosity in kaon-condensed color-flavor locked quark matter

    Full text link
    Color-flavor locked (CFL) quark matter at high densities is a color superconductor, which spontaneously breaks baryon number and chiral symmetry. Its low-energy thermodynamic and transport properties are therefore dominated by the H (superfluid) boson, and the octet of pseudoscalar pseudo-Goldstone bosons of which the neutral kaon is the lightest. We study the CFL-K^0 phase, in which the stress induced by the strange quark mass causes the kaons to condense, and there is an additional ultra-light "K^0" Goldstone boson arising from the spontaneous breaking of isospin. We compute the bulk viscosity of matter in the CFL-K^0 phase, which arises from the beta-equilibration processes K^0H+H and K^0+HH. We find that the bulk viscosity varies as T^7, unlike the CFL phase where it is exponentially Boltzmann-suppressed by the kaon's energy gap. However, in the temperature range of relevance for r-mode damping in compact stars, the bulk viscosity in the CFL-K^0 phase turns out to be even smaller than in the uncondensed CFL phase, which already has a bulk viscosity much smaller than all other known color-superconducting quark phases.Comment: 23 pages, 8 figures, v2: references added; minor rephrasings in the conclusions; version to appear in J. Phys.

    Thermal states of coldest and hottest neutron stars in soft X-ray transients

    Full text link
    We calculate the thermal structure and quiescent thermal luminosity of accreting neutron stars (warmed by deep crustal heating in accreted matter) in soft X-ray transients (SXTs). We consider neutron stars with nucleon and hyperon cores and with accreted envelopes. It is assumed that an envelope has an outer helium layer (of variable depth) and deeper layers of heavier elements, either with iron or with much heavier nuclei (of atomic weight A > 100) on the top (Haensel & Zdunik 1990, 2003, astro-ph/0305220). The relation between the internal and surface stellar temperatures is obtained and fitted. The quiescent luminosity of the hottest (low-mass) and coldest (high-mass) neutron stars is calculated, together with the ranges of its possible variations due to variable thickness of the helium layer. The results are compared with observations of SXTs, particularly, containing the coldest (SAX J1808.4-3658) and the hottest (Aql X-1) neutron stars. The observations of SAX J1808.4-3658 in a quiescent state on March 24, 2001 (Campana et al. 2002, astro-ph/0206376) can be explained only if this SXT contains a massive neutron star with a nucleon/hyperon core; a hyperon core with a not too low fraction of electrons is preferable. Future observations may discriminate between the various models of hyperon/nucleon dense matter. The thermal emission of SAX J1808.4-3658 is also sensitive to the models of plasma ionization in the outermost surface layers and can serve for testing such models.Comment: 12 pages, 5 figures, 4 tables, LaTeX2e with aa.cls v.5.3 (included). Accepted by A&

    Minimal Cooling of Neutron Stars: A New Paradigm

    Full text link
    A new classification of neutron star cooling scenarios, involving either ``minimal'' cooling or ``enhanced'' cooling is proposed. The minimal cooling scenario replaces and extends the so-called standard cooling scenario to include neutrino emission from the Cooper pair breaking and formation process. This emission dominates that due to the modified Urca process for temperatures close to the critical temperature for superfluid pairing. Minimal cooling is distinguished from enhanced cooling by the absence of neutrino emission from any direct Urca process, due either to nucleons or to exotica. Within the minimal cooling scenario, theoretical cooling models can be considered to be a four parameter family involving the equation of state of dense matter, superfluid properties of dense matter, the composition of the neutron star envelope, and the mass of the neutron star. Consequences of minimal cooling are explored through extensive variations of these parameters. Results are compared with the inferred properties of thermally-emitting neutron stars in order to ascertain if enhanced cooling occurs in any of them. All stars for which thermal emissions have been clearly detected are at least marginally consistent with the lack of enhanced cooling. The two pulsars PSR 0833-45 (Vela) and PSR 1706-44 would require enhanced cooling in case their ages and/or temperatures are on the lower side of their estimated values whereas the four stars PSR 0656+14, PSR 1055-52, Geminga, and RX J0720.4-3125 may require some source of internal heating in case their age and/or luminosity are on the upper side of their estimated values. The new upper limits on the thermal luminosity of PSR J0205+6449 and RX J0007.0+7302 are indicative of the occurrence of some enhanced neutrino emission beyond the minimal scenario.Comment: Version to appear in ApJ Supplements. Minor modifications in text and discussion of updated data with new figure

    Physics of Neutron Star Crusts

    Get PDF
    The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.Comment: 182 pages, published version available at <http://www.livingreviews.org/lrr-2008-10
    corecore