450 research outputs found

    An Algebraic Theory for Data Linkage

    Get PDF
    There are countless sources of data available to governments, companies, and citizens, which can be combined for good or evil. We analyse the concepts of combining data from common sources and linking data from different sources. We model the data and its information content to be found in a single source by an ordered partial monoid, and the transfer of information between sources by different types of morphisms. To capture the linkage between a family of sources, we use a form of Grothendieck construction to create an ordered partial monoid that brings together the global data of the family in a single structure. We apply our approach to database theory and axiomatic structures in approximate reasoning. Thus, ordered partial monoids provide a foundation for the algebraic study for information gathering in its most primitive form

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF

    Full text link
    The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described

    Dual properties of the relative belief of singletons

    Get PDF
    In this paper we prove that a recent Bayesian approximation of belief functions, the relative belief of singletons, meets a number of properties with respect to Dempster’s rule of combination which mirrors those satisfied by the relative plausibility of singletons. In particular, its operator commutes with Dempster’s sum of plausibility functions, while perfectly representing a plausibility function when combined through Dempster’s rule. This suggests a classification of all Bayesian approximations into two families according to the operator they relate to

    Excessive HDAC activation is critical for neurodegeneration in the rd1 mouse

    Get PDF
    Inherited retinal degenerations, collectively termed retinitis pigmentosa (RP), constitute one of the leading causes of blindness in the developed world. RP is at present untreatable and the underlying neurodegenerative mechanisms are unknown, even though the genetic causes are often established. Acetylation and deacetylation of histones, carried out by histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively, affects cellular division, differentiation, death and survival. We found acetylation of histones and probably other proteins to be dramatically reduced in degenerating photoreceptors in the rd1 human homologous mouse model for RP. Using a custom developed in situ HDAC activity assay, we show that overactivation of HDAC classes I/II temporally precedes photoreceptor degeneration. Moreover, pharmacological inhibition of HDACs I/II activity in rd1 organotypic retinal explants decreased activity of poly-ADP-ribose-polymerase and strongly reduced photoreceptor cell death. These findings highlight the importance of protein acetylation for photoreceptor cell death and survival and propose certain HDAC classes as novel targets for the pharmacological intervention in RP

    Context-dependent combination of sensor information in Dempster–Shafer theory for BDI

    Get PDF
    © 2016, The Author(s). There has been much interest in the belief–desire–intention (BDI) agent-based model for developing scalable intelligent systems, e.g. using the AgentSpeak framework. However, reasoning from sensor information in these large-scale systems remains a significant challenge. For example, agents may be faced with information from heterogeneous sources which is uncertain and incomplete, while the sources themselves may be unreliable or conflicting. In order to derive meaningful conclusions, it is important that such information be correctly modelled and combined. In this paper, we choose to model uncertain sensor information in Dempster–Shafer (DS) theory. Unfortunately, as in other uncertainty theories, simple combination strategies in DS theory are often too restrictive (losing valuable information) or too permissive (resulting in ignorance). For this reason, we investigate how a context-dependent strategy originally defined for possibility theory can be adapted to DS theory. In particular, we use the notion of largely partially maximal consistent subsets (LPMCSes) to characterise the context for when to use Dempster’s original rule of combination and for when to resort to an alternative. To guide this process, we identify existing measures of similarity and conflict for finding LPMCSes along with quality of information heuristics to ensure that LPMCSes are formed around high-quality information. We then propose an intelligent sensor model for integrating this information into the AgentSpeak framework which is responsible for applying evidence propagation to construct compatible information, for performing context-dependent combination and for deriving beliefs for revising an agent’s belief base. Finally, we present a power grid scenario inspired by a real-world case study to demonstrate our work

    Structural Heterogeneity and Quantitative FRET Efficiency Distributions of Polyprolines through a Hybrid Atomistic Simulation and Monte Carlo Approach

    Get PDF
    Förster Resonance Energy Transfer (FRET) experiments probe molecular distances via distance dependent energy transfer from an excited donor dye to an acceptor dye. Single molecule experiments not only probe average distances, but also distance distributions or even fluctuations, and thus provide a powerful tool to study biomolecular structure and dynamics. However, the measured energy transfer efficiency depends not only on the distance between the dyes, but also on their mutual orientation, which is typically inaccessible to experiments. Thus, assumptions on the orientation distributions and averages are usually made, limiting the accuracy of the distance distributions extracted from FRET experiments. Here, we demonstrate that by combining single molecule FRET experiments with the mutual dye orientation statistics obtained from Molecular Dynamics (MD) simulations, improved estimates of distances and distributions are obtained. From the simulated time-dependent mutual orientations, FRET efficiencies are calculated and the full statistics of individual photon absorption, energy transfer, and photon emission events is obtained from subsequent Monte Carlo (MC) simulations of the FRET kinetics. All recorded emission events are collected to bursts from which efficiency distributions are calculated in close resemblance to the actual FRET experiment, taking shot noise fully into account. Using polyproline chains with attached Alexa 488 and Alexa 594 dyes as a test system, we demonstrate the feasibility of this approach by direct comparison to experimental data. We identified cis-isomers and different static local environments as sources of the experimentally observed heterogeneity. Reconstructions of distance distributions from experimental data at different levels of theory demonstrate how the respective underlying assumptions and approximations affect the obtained accuracy. Our results show that dye fluctuations obtained from MD simulations, combined with MC single photon kinetics, provide a versatile tool to improve the accuracy of distance distributions that can be extracted from measured single molecule FRET efficiencies

    Frequency of resistance to methicillin and other antimicrobial agents among Staphylococcus aureus strains isolated from pigs and their human handlers in Trinidad

    Get PDF
    Background: Methicillin-resistant Staphylococcus aureus (MRSA) has emerged recently worldwide in production animals, particularly pigs and veal calves, which act as reservoirs for MRSA strains for human infection. The study determined the prevalence of MRSA and other resistant strains of S. aureus isolated from the anterior nares of pigs and human handlers on pig farms in Trinidad. Methods: Isolation of S. aureus was done by concurrently inoculating Baird-Parker agar (BPA) and Chromagar MRSA (CHROM) with swab samples and isolates were identified using standard methods. Suspect MRSA isolates from Chromagar and BPA were subjected to confirmatory test using Oxoid PBP2 latex agglutination test. The disc diffusion method was used to determine resistance to antimicrobial agents. Results: The frequency of isolation of MRSA was 2.1% (15 of 723) for pigs but 0.0% (0 of 72) for humans. Generally, for isolates of S. aureus from humans there was a high frequency of resistance compared with those from pigs, which had moderate resistance to the following antimicrobials: penicillin G (54.5%, 51.5%), ampicillin (59.1%, 49.5%), and streptomycin (59.1%, 37.1%), respectively. There was moderate resistance to tetracycline (36.4%, 41.2%) and gentamycin (27.2%, 23.7%) for human and pig S. aureus isolates, respectively, and low resistance to sulfamethoxazole-trimethoprim (4.5%, 6.2%) and norfloxacin (9.1%, 12.4%), respectively. The frequency of resistance to oxacillin by the disc method was 36.4 and 34.0% from S. aureus isolates from humans and pigs, respectively. Out of a total of 78 isolates of S. aureus from both human and pig sources that were resistant to oxacillin by the disc diffusion method, only 15 (19.2%) were confirmed as MRSA by the PBP'2 latex test kit. Conclusions: The detection of MRSA strains in pigs, albeit at a low frequency, coupled with a high frequency of resistance to commonly used antimicrobial agents in pig and humans could have zoonotic and therapeutic implications. Finally, the diagnostic limitation of using CHROMagar and testing for oxacillin resistance by the disc diffusion method alone to determine MRSA strains without performing confirmatory tests cannot be overemphasized because the possibility of overdiagnosis of MRSA infections cannot be ignored

    TAC102 is a novel component of the mitochondrial genome segregation machinery in trypanosomes

    Get PDF
    Trypanosomes show an intriguing organization of their mitochondrial DNA into a catenated network, the kinetoplast DNA (kDNA). While more than 30 proteins involved in kDNA replication have been described, only few components of kDNA segregation machinery are currently known. Electron microscopy studies identified a high-order structure, the tripartite attachment complex (TAC), linking the basal body of the flagellum via the mitochondrial membranes to the kDNA. Here we describe TAC102, a novel core component of the TAC, which is essential for proper kDNA segregation during cell division. Loss of TAC102 leads to mitochondrial genome missegregation but has no impact on proper organelle biogenesis and segregation. The protein is present throughout the cell cycle and is assembled into the newly developing TAC only after the pro-basal body has matured indicating a hierarchy in the assembly process. Furthermore, we provide evidence that the TAC is replicated de novo rather than using a semi-conservative mechanism. Lastly, we demonstrate that TAC102 lacks an N-terminal mitochondrial targeting sequence and requires sequences in the C-terminal part of the protein for its proper localization

    Antibacterial Characterization of Novel Synthetic Thiazole Compounds against Methicillin-Resistant Staphylococcus pseudintermedius

    Get PDF
    Staphylococcus pseudintermedius is a commensal organism of companion animals that is a significant source of opportunistic infections in dogs. With the emergence of clinical isolates of S. pseudintermedius (chiefly methicillin-resistant S. pseudintermedius (MRSP)) exhibiting increased resistance to nearly all antibiotic classes, new antimicrobials and therapeutic strategies are urgently needed. Thiazole compounds have been previously shown to possess potent antibacterial activity against multidrug-resistant strains of Staphylococcus aureus of human and animal concern. Given the genetic similarity between S. aureus and S. pseudintermedius, this study explores the potential use of thiazole compounds as novel antibacterial agents against methicillin-sensitive S. pseudintermedius (MSSP) and MRSP. A broth microdilution assay confirmed these compounds exhibit potent bactericidal activity (at sub-microgram/mL concentrations) against both MSSA and MRSP clinical isolates while the MTS assay confirmed three compounds (at 10 μg/mL) were not toxic to mammalian cells. A time-kill assay revealed two derivatives rapidly kill MRSP within two hours. However, this rapid bactericidal activity was not due to disruption of the bacterial cell membrane indicating an alternative mechanism of action for these compounds against MRSP. A multistep resistance selection analysis revealed compounds 4 and 5 exhibited a modest (twofold) shift in activity over ten passages. Furthermore, all six compounds (at a subinihibitory concentration) demonstrated the ability to re-sensitize MRSP to oxacillin, indicating these compounds have potential use for extending the therapeutic utility of β-lactam antibiotics against MRSP. Metabolic stability analysis with dog liver microsomes revealed compound 3 exhibited an improved physicochemical profile compared to the lead compound. In addition to this, all six thiazole compounds possessed a long post-antibiotic effect (at least 8 hours) against MRSP. Collectively the present study demonstrates these synthetic thiazole compounds possess potent antibacterial activity against both MSSP and MRSP and warrant further investigation into their use as novel antimicrobial agents
    corecore