277 research outputs found
An Error Model for the Cirac-Zoller CNOT gate
In the framework of ion-trap quantum computing, we develop a characterization
of experimentally realistic imperfections which may affect the Cirac-Zoller
implementation of the CNOT gate. The CNOT operation is performed by applying a
protocol of five laser pulses of appropriate frequency and polarization. The
laser-pulse protocol exploits auxiliary levels, and its imperfect
implementation leads to unitary as well as non-unitary errors affecting the
CNOT operation. We provide a characterization of such imperfections, which are
physically realistic and have never been considered before to the best of our
knowledge. Our characterization shows that imperfect laser pulses unavoidably
cause a leak of information from the states which alone should be transformed
by the ideal gate, into the ancillary states exploited by the experimental
implementation.Comment: 10 pages, 1 figure. Accepted as a contributed oral communication in
the QuantumComm 2009 International Conference on Quantum Communication and
Quantum Networking, Vico Equense, Italy, October 26-30, 200
Engineering vibrationally-assisted energy transfer in a trapped-ion quantum simulator
Many important chemical and biochemical processes in the condensed phase are
notoriously difficult to simulate numerically. Often this difficulty arises
from the complexity of simulating dynamics resulting from coupling to
structured, mesoscopic baths, for which no separation of time scales exists and
statistical treatments fail. A prime example of such a process is vibrationally
assisted charge or energy transfer. A quantum simulator, capable of
implementing a realistic model of the system of interest, could provide insight
into these processes in regimes where numerical treatments fail. We take a
first step towards modeling such transfer processes using an ion trap quantum
simulator. By implementing a minimal model, we observe vibrationally assisted
energy transport between the electronic states of a donor and an acceptor ion
augmented by coupling the donor ion to its vibration. We tune our simulator
into several parameter regimes and, in particular, investigate the transfer
dynamics in the nonperturbative regime often found in biochemical situations
Nonlinear Spectroscopy of Controllable Many-Body Quantum Systems
We establish a novel approach to probing spatially resolved multi-time
correlation functions of interacting many-body systems, with scalable
experimental overhead. Specifically, designing nonlinear measurement protocols
for multidimensional spectra in a chain of trapped ions with single-site
addressability enables us, e.g., to distinguish coherent from incoherent
transport processes, to quantify potential anharmonicities, and to identify
decoherence-free subspaces.Comment: 12 pages, 3 figure
Depth-dependent critical behavior in V2H
Using X-ray diffuse scattering, we investigate the critical behavior of an
order-disorder phase transition in a defective "skin-layer" of V2H. In the
skin-layer, there exist walls of dislocation lines oriented normal to the
surface. The density of dislocation lines within a wall decreases continuously
with depth. We find that, because of this inhomogeneous distribution of
defects, the transition effectively occurs at a depth-dependent local critical
temperature. A depth-dependent scaling law is proposed to describe the
corresponding critical ordering behavior.Comment: 5 pages, 4 figure
A 4-unit-cell superstructure in optimally doped YBa2Cu3O6.92 superconductor
Using high-energy diffraction we show that a 4-unit-cell superstructure,
q0=(1/4,0,0), along the shorter Cu-Cu bonds coexists with superconductivity in
optimally doped YBCO. A complex set of anisotropic atomic displacements on
neighboring CuO chain planes, BaO planes, and CuO2 planes, respectively,
correlated over ~3-6 unit cells gives rise to diffuse superlattice peaks. Our
observations are consistent with the presence of Ortho-IV nanodomains
containing these displacements.Comment: Corrected typo in abstrac
Highly non-Gaussian states created via cross-Kerr nonlinearity
We propose a feasible scheme for generation of strongly non-Gaussian states
using the cross-Kerr nonlinearity. The resultant states are highly
non-classical states of electromagnetic field and exhibit negativity of their
Wigner function, sub-Poissonian photon statistics, and amplitude squeezing.
Furthermore, the Wigner function has a distinctly pronounced ``banana'' or
``crescent'' shape specific for the Kerr-type interactions, which so far was
not demonstrated experimentally. We show that creating and detecting such
states should be possible with the present technology using electromagnetically
induced transparency in a four-level atomic system in N-configuration.Comment: 12 pages, 7 figure
Mapping coherence in measurement via full quantum tomography of a hybrid optical detector
Quantum states and measurements exhibit wave-like --- continuous, or
particle-like --- discrete, character. Hybrid discrete-continuous photonic
systems are key to investigating fundamental quantum phenomena, generating
superpositions of macroscopic states, and form essential resources for
quantum-enhanced applications, e.g. entanglement distillation and quantum
computation, as well as highly efficient optical telecommunications. Realizing
the full potential of these hybrid systems requires quantum-optical
measurements sensitive to complementary observables such as field quadrature
amplitude and photon number. However, a thorough understanding of the practical
performance of an optical detector interpolating between these two regions is
absent. Here, we report the implementation of full quantum detector tomography,
enabling the characterization of the simultaneous wave and photon-number
sensitivities of quantum-optical detectors. This yields the largest
parametrization to-date in quantum tomography experiments, requiring the
development of novel theoretical tools. Our results reveal the role of
coherence in quantum measurements and demonstrate the tunability of hybrid
quantum-optical detectors.Comment: 7 pages, 3 figure
ОБЩИННАЯ ТЕОРИЯ Н.Г.ЧЕРНЫШЕВСКОГО В ИСТОРИОГРАФИИ
Розглядається общинна теорія М.Г.Чернишевского та шляхи її вивчення у дореволюційній
та радянській історіоргафії. Вказано на досягнення та вади, які були властиві достідникам
цього питання.There is investigated a community theory of N.Cheryshevsky and ways of its studying in
prerevolutional and revolutional historiography. There are pointed out faults and achievements of this
problem researchers
- …