957 research outputs found

    Chiral zero modes of the SU(n) Wess-Zumino-Novikov-Witten model

    Full text link
    We define the chiral zero modes' phase space of the G=SU(n) Wess-Zumino-Novikov-Witten model as an (n-1)(n+2)-dimensional manifold M_q equipped with a symplectic form involving a special 2-form - the Wess-Zumino (WZ) term - which depends on the monodromy M. This classical system exhibits a Poisson-Lie symmetry that evolves upon quantization into an U_q(sl_n) symmetry for q a primitive even root of 1. For each constant solution of the classical Yang-Baxter equation we write down explicitly a corresponding WZ term and invert the symplectic form thus computing the Poisson bivector of the system. The resulting Poisson brackets appear as the classical counterpart of the exchange relations of the quantum matrix algebra studied previously. We argue that it is advantageous to equate the determinant D of the zero modes' matrix to a pseudoinvariant under permutations q-polynomial in the SU(n) weights, rather than to adopt the familiar convention D=1.Comment: 30 pages, LaTeX, uses amsfonts; v.2 - small corrections, Appendix and a reference added; v.3 - amended version for J. Phys.

    A Quantum Gauge Group Approach to the 2D SU(n) WZNW Model

    Get PDF
    The canonical quantization of the WZNW model provides a complete set of exchange relations in the enlarged chiral state spaces that include the Gauss components of the monodromy matrices. Regarded as new dynamical variables, the elements of the latter cannot be identified -- they satisfy different exchange relations. Accordingly, the two dimensional theory expressed in terms of the left and right movers' fields does not automatically respect monodromy invariance. Continuing our recent analysis of the problem by gauge theory methods we conclude that physical states (on which the two dimensional field acts as a single valued operator) are invariant under the (permuted) coproduct of the left and right Uq(sl(n))U_q(sl(n)). They satisfy additional constraints fully described for n=2.Comment: 10 pages, LATEX (Proposition 4.2 corrected, one reference added

    Operator realization of the SU(2) WZNW model

    Get PDF
    Decoupling the chiral dynamics in the canonical approach to the WZNW model requires an extended phase space that includes left and right monodromy variables. Earlier work on the subject, which traced back the quantum qroup symmetry of the model to the Lie-Poisson symmetry of the chiral symplectic form, left some open questions: - How to reconcile the monodromy invariance of the local 2D group valued field (i.e., equality of the left and right monodromies) with the fact that the latter obey different exchange relations? - What is the status of the quantum group symmetry in the 2D theory in which the chiral fields commute? - Is there a consistent operator formalism in the chiral and in the extended 2D theory in the continuum limit? We propose a constructive affirmative answer to these questions for G=SU(2) by presenting the chiral quantum fields as sums of chiral vertex operators and q-Bose creation and annihilation operators.Comment: 18 pages, LATE
    corecore