100 research outputs found

    Vox-E: Text-guided Voxel Editing of 3D Objects

    Full text link
    Large scale text-guided diffusion models have garnered significant attention due to their ability to synthesize diverse images that convey complex visual concepts. This generative power has more recently been leveraged to perform text-to-3D synthesis. In this work, we present a technique that harnesses the power of latent diffusion models for editing existing 3D objects. Our method takes oriented 2D images of a 3D object as input and learns a grid-based volumetric representation of it. To guide the volumetric representation to conform to a target text prompt, we follow unconditional text-to-3D methods and optimize a Score Distillation Sampling (SDS) loss. However, we observe that combining this diffusion-guided loss with an image-based regularization loss that encourages the representation not to deviate too strongly from the input object is challenging, as it requires achieving two conflicting goals while viewing only structure-and-appearance coupled 2D projections. Thus, we introduce a novel volumetric regularization loss that operates directly in 3D space, utilizing the explicit nature of our 3D representation to enforce correlation between the global structure of the original and edited object. Furthermore, we present a technique that optimizes cross-attention volumetric grids to refine the spatial extent of the edits. Extensive experiments and comparisons demonstrate the effectiveness of our approach in creating a myriad of edits which cannot be achieved by prior works.Comment: Project webpage: https://tau-vailab.github.io/Vox-E

    A simple method for developing lysine targeted covalent protein reagents

    Get PDF
    Peptide-based covalent probes can target shallow protein surfaces not typically addressable using small molecules, yet there is a need for versatile approaches to convert native peptide sequences into covalent binders that can target a broad range of residues. Here we report protein-based thio-methacrylate esters—electrophiles that can be installed easily on unprotected peptides and proteins via cysteine side chains, and react efficiently and selectively with cysteine and lysine side chains on the target. Methacrylate phosphopeptides derived from 14-3-3-binding proteins irreversibly label 14-3-3σ via either lysine or cysteine residues, depending on the position of the electrophile. Methacrylate peptides targeting a conserved lysine residue exhibit pan-isoform binding of 14-3-3 proteins both in lysates and in extracellular media. Finally, we apply this approach to develop protein-based covalent binders. A methacrylate-modified variant of the colicin E9 immunity protein irreversibly binds to the E9 DNAse, resulting in significantly higher thermal stability relative to the non-covalent complex. Our approach offers a simple and versatile route to convert peptides and proteins into potent covalent binders.</p

    High Functional Diversity in Mycobacterium tuberculosis Driven by Genetic Drift and Human Demography

    Get PDF
    Mycobacterium tuberculosis infects one third of the human world population and kills someone every 15 seconds. For more than a century, scientists and clinicians have been distinguishing between the human- and animal-adapted members of the M. tuberculosis complex (MTBC). However, all human-adapted strains of MTBC have traditionally been considered to be essentially identical. We surveyed sequence diversity within a global collection of strains belonging to MTBC using seven megabase pairs of DNA sequence data. We show that the members of MTBC affecting humans are more genetically diverse than generally assumed, and that this diversity can be linked to human demographic and migratory events. We further demonstrate that these organisms are under extremely reduced purifying selection and that, as a result of increased genetic drift, much of this genetic diversity is likely to have functional consequences. Our findings suggest that the current increases in human population, urbanization, and global travel, combined with the population genetic characteristics of M. tuberculosis described here, could contribute to the emergence and spread of drug-resistant tuberculosis

    SPRING: an RCT study of probiotics in the prevention of gestational diabetes mellitus in overweight and obese women

    Get PDF
    Background: Obesity is increasing in the child-bearing population as are the rates of gestational diabetes. Gestational diabetes is associated with higher rates of Cesarean Section for the mother and increased risks of macrosomia, higher body fat mass, respiratory distress and hypoglycemia for the infant. Prevention of gestational diabetes through life style intervention has proven to be difficult. A Finnish study showed that ingestion of specific probiotics altered the composition of the gut microbiome and thereby metabolism from early gestation and decreased rates of gestational diabetes in normal weight women. In SPRING (the Study of Probiotics IN the prevention of Gestational diabetes), the effectiveness of probiotics ingestion for the prevention of gestational diabetes will be assessed in overweight and obese women

    The Compton Spectrometer and Imager

    Full text link
    The Compton Spectrometer and Imager (COSI) is a NASA Small Explorer (SMEX) satellite mission in development with a planned launch in 2027. COSI is a wide-field gamma-ray telescope designed to survey the entire sky at 0.2-5 MeV. It provides imaging, spectroscopy, and polarimetry of astrophysical sources, and its germanium detectors provide excellent energy resolution for emission line measurements. Science goals for COSI include studies of 0.511 MeV emission from antimatter annihilation in the Galaxy, mapping radioactive elements from nucleosynthesis, determining emission mechanisms and source geometries with polarization measurements, and detecting and localizing multimessenger sources. The instantaneous field of view for the germanium detectors is >25% of the sky, and they are surrounded on the sides and bottom by active shields, providing background rejection as well as allowing for detection of gamma-ray bursts and other gamma-ray flares over most of the sky. In the following, we provide an overview of the COSI mission, including the science, the technical design, and the project status.Comment: 8 page

    The cosipy library: COSI's high-level analysis software

    Full text link
    The Compton Spectrometer and Imager (COSI) is a selected Small Explorer (SMEX) mission launching in 2027. It consists of a large field-of-view Compton telescope that will probe with increased sensitivity the under-explored MeV gamma-ray sky (0.2-5 MeV). We will present the current status of cosipy, a Python library that will perform spectral and polarization fits, image deconvolution, and all high-level analysis tasks required by COSI's broad science goals: uncovering the origin of the Galactic positrons, mapping the sites of Galactic nucleosynthesis, improving our models of the jet and emission mechanism of gamma-ray bursts (GRBs) and active galactic nuclei (AGNs), and detecting and localizing gravitational wave and neutrino sources. The cosipy library builds on the experience gained during the COSI balloon campaigns and will bring the analysis of data in the Compton regime to a modern open-source likelihood-based code, capable of performing coherent joint fits with other instruments using the Multi-Mission Maximum Likelihood framework (3ML). In this contribution, we will also discuss our plans to receive feedback from the community by having yearly software releases accompanied by publicly-available data challenges

    Meta-analysis of multidecadal biodiversity trends in Europe

    Get PDF
    Local biodiversity trends over time are likely to be decoupled from global trends, as local processes may compensate or counteract global change. We analyze 161 long-term biological time series (15-91 years) collected across Europe, using a comprehensive dataset comprising similar to 6,200 marine, freshwater and terrestrial taxa. We test whether (i) local long-term biodiversity trends are consistent among biogeoregions, realms and taxonomic groups, and (ii) changes in biodiversity correlate with regional climate and local conditions. Our results reveal that local trends of abundance, richness and diversity differ among biogeoregions, realms and taxonomic groups, demonstrating that biodiversity changes at local scale are often complex and cannot be easily generalized. However, we find increases in richness and abundance with increasing temperature and naturalness as well as a clear spatial pattern in changes in community composition (i.e. temporal taxonomic turnover) in most biogeoregions of Northern and Eastern Europe. The global biodiversity decline might conceal complex local and group-specific trends. Here the authors report a quantitative synthesis of longterm biodiversity trends across Europe, showing how, despite overall increase in biodiversity metric and stability in abundance, trends differ between regions, ecosystem types, and taxa.peerReviewe
    corecore