263 research outputs found

    Increased susceptibility to proactive interference in adults with dyslexia?

    Get PDF
    Recent findings show that people with dyslexia have an impairment in serial-order memory. Based on these findings, the present study aimed to test the hypothesis that people with dyslexia have difficulties dealing with proactive interference (PI) in recognition memory. A group of 25 adults with dyslexia and a group of matched controls were subjected to a 2-back recognition task, which required participants to indicate whether an item (mis)matched the item that had been presented 2 trials before. PI was elicited using lure trials in which the item matched the item in the 3-back position instead of the targeted 2-back position. Our results demonstrate that the introduction of lure trials affected 2-back recognition performance more severely in the dyslexic group than in the control group, suggesting greater difficulty in resisting PI in dyslexia.Peer reviewedFinal Accepted Versio

    Metastable order protected by destructive many-body interference

    Full text link
    The phenomenon of metastability can shape dynamical processes on all temporal and spatial scales. Here, we induce metastable dynamics by pumping ultracold bosonic atoms from the lowest band of an optical lattice to an excitation band, via a sudden quench of the unit cell. The subsequent relaxation process to the lowest band displays a sequence of stages, which include a metastable stage, during which the atom loss from the excitation band is strongly suppressed. Using classical-field simulations and analytical arguments, we provide an explanation for this experimental observation, in which we show that the transient condensed state of the atoms in the excitation band is a dark state with regard to collisional decay and tunneling to a low-energy orbital. Therefore the metastable state is stabilized by destructive interference due to the chiral phase pattern of the condensed state. Our experimental and theoretical study provides a detailed understanding of the different stages of a paradigmatic example of many-body relaxation dynamics

    Step-Wise Computational Synthesis of Fullerene C60 derivatives. 1.Fluorinated Fullerenes C60F2k

    Full text link
    The reactions of fullerene C60 with atomic fluorine have been studied by unrestricted broken spin-symmetry Hartree-Fock (UBS HF) approach implemented in semiempirical codes based on AM1 technique. The calculations were focused on a sequential addition of fluorine atom to the fullerene cage following indication of the cage atom highest chemical susceptibility that is calculated at each step. The effectively-non-paired-electron concept of the fullerene atoms chemical susceptibility lays the foundation of the suggested computational synthesis. The obtained results are analyzed from energetic, symmetry, and the composition abundance viewpoints. A good fitting of the data to experimental findings proves a creative role of the suggested synthesis methodology.Comment: 33 pages, 11 figures, 2 tables, 2 chart

    Spin states of zigzag-edged Mobius graphene nanoribbons from first principles

    Full text link
    Mobius graphene nanoribbons have only one edge topologically. How the magnetic structures, previously associated with the two edges of zigzag-edged flat nanoribbons or cyclic nanorings, would change for their Mobius counterparts is an intriguing question. Using spin-polarized density functional theory, we shed light on this question. We examine spin states of zigzag-edged Mobius graphene nanoribbons (ZMGNRs) with different widths and lengths. We find a triplet ground state for a Mobius cyclacene, while the corresponding two-edged cyclacene has an open-shell singlet ground state. For wider ZMGNRs, the total magnetization of the ground state is found to increase with the ribbon length. For example, a quintet ground state is found for a ZMGNR. Local magnetic moments on the edge carbon atoms form domains of majority and minor spins along the edge. Spins at the domain boundaries are found to be frustrated. Our findings show that the Mobius topology (i.e., only one edge) causes ZMGNRs to favor one spin over the other, leading to a ground state with non-zero total magnetization.Comment: 17 pages, 4 figure

    Entanglement Measures for Single- and Multi-Reference Correlation Effects

    Full text link
    Electron correlation effects are essential for an accurate ab initio description of molecules. A quantitative a priori knowledge of the single- or multi-reference nature of electronic structures as well as of the dominant contributions to the correlation energy can facilitate the decision regarding the optimum quantum chemical method of choice. We propose concepts from quantum information theory as orbital entanglement measures that allow us to evaluate the single- and multi-reference character of any molecular structure in a given orbital basis set. By studying these measures we can detect possible artifacts of small active spaces.Comment: 14 pages, 4 figure

    Photoinduced Structural Phase Transitions in Polyacene

    Full text link
    There exist two types of structural instability in polyacene: double bonds in a cis pattern and those in a trans pattern. They are isoenergetic but spectroscopically distinct. We demonstrate optical characterization and manipulation of Peierls-distorted polyacene employing both correlated and uncorrelated Hamiltonians. We clarify the phase boundaries of the cis- and trans-distorted isomers, elucidate their optical-conductivity spectra, and then explore their photoresponses. There occurs a photoinduced transformation in the polyacene structure, but it is one-way switching: The trans configuration is well convertible into the cis one, whereas the reverse conversion is much less feasible. Even the weakest light irradiation can cause a transition of uncorrelated electrons, while correlated electrons have a transition threshold against light irradiation.Comment: 14 pages with 15 figures embedde

    Whole Genome Characterization of the Mechanisms of Daptomycin Resistance in Clinical and Laboratory Derived Isolates of Staphylococcus aureus

    Get PDF
    Background: Daptomycin remains one of our last-line anti-staphylococcal agents. This study aims to characterize the genetic evolution to daptomycin resistance in S. aureus. Methods: Whole genome sequencing was performed on a unique collection of isogenic, clinical (21 strains) and laboratory (12 strains) derived strains that had been exposed to daptomycin and developed daptomycin-nonsusceptibility. Electron microscopy (EM) and lipid membrane studies were performed on selected isolates. Results: On average, six coding region mutations were observed across the genome in the clinical daptomycin exposed strains, whereas only two mutations on average were seen in the laboratory exposed pairs. All daptomycin-nonsusceptible strains had a mutation in a phospholipid biosynthesis gene. This included mutations in the previously described mprF gene, but also in other phospholipid biosynthesis genes, including cardiolipin synthase (cls2) and CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase (pgsA). EM and lipid membrane composition analyses on two clinical pairs showed that the daptomycin-nonsusceptible strains had a thicker cell wall and an increase in membrane lysyl-phosphatidylglycerol. Conclusion: Point mutations in genes coding for membrane phospholipids are associated with the development of reduced susceptibility to daptomycin in S. aureus. Mutations in cls2 and pgsA appear to be new genetic mechanisms affecting daptomycin susceptibility in S. aureus
    • …
    corecore