19 research outputs found
Etude du passage d’un phospholipide structuré « AceDoPC » à travers une barrière hémato-encéphalique reconstituée in vitro et de sa biodisponibilité cérébrale in vivo chez le rat
Docosahexaenoic acid (DHA, 22:6n-3) is the main essential omega-3 fatty acid in brain tissues required for normal brain development and function. A decrease in the cerebral concentration of DHA is observed in patients suffering from neurodegenerative diseases such as Alzheimer’s and Parkinson’s. Targeted intake of DHA to the brain could compensate for these deficiencies. Blood DHA is transported across the blood-brain barrier (BBB) more efficiently when esterified at the sn-2 position of lysophosphatidylcholine (lysoPC). We produce in the laboratory a structured phosphatidylcholine to mimic 2-docosahexaenoyl-lysoPC (lysoPC-DHA), named AceDoPC (1-acetyl,2-docosahexaenoyl-glycerophosphocholine), that may be considered as a stabilized form of the physiological lysoPC-DHA and that is neuroprotective in experimental ischemic stroke. The first objective of this work was to compare the passage of either labeled unesterified DHA or DHA esterified in AceDoPC or in phosphatidylcholine (PC-DHA), bound to plasma, through an in vitro model of the BBB. This model is constituted of a co-culture of bovine brain capillary endothelial cells and glial cells from newborn rats. We show a preferential passage through the endothelial monolayer and a preferential uptake by glial cells of AceDoPC compared to unesterified DHA and PC-DHA. We also show that AceDoPC is hydrolyzed, partly, into lysoPC-DHA and that phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are the most labeled lipid classes in endothelial cells and glial cells. AceDoPC is found, partly, as a whole molecule in the cells. The second objective of this work was to confirm whether this preference for AceDoPC was also observed in vivo. We studied, in 20 days old rats, the brain uptake of different forms of DHA previously used (DHA, AceDoPC, PC-DHA). We demonstrate that AceDoPC provided the brain with DHA more efficiently than the other forms of DHA and that this preference for AceDoPC is specific for the brain because it is not observed for other studied organs. AceDoPC is found, partly, intact in the brain. Ex vivo autoradiography of rat brain reveals that DHA provided from AceDoPC is localized in specific brain regions playing key roles in memory and cognitive functions. Finally, by using molecular modelling approaches, we demonstrate that electrostatic and hydrophobic potentials are distributed very similarly at the surfaces of AceDoPC and lysoPC-DHA. In conclusion, our studies demonstrate that AceDoPC is a privileged and specific carrier of DHA to the brain. Considering the essential roles of DHA for the brain, this new approach to target the brain with DHA offers promising perspectives in the development of preventive and therapeutic strategies for neurological diseases.L’acide docosahexaénoïque (DHA, 22:6n-3) est le principal acide gras oméga-3 des tissus cérébraux et est essentiel au développement et aux fonctions du cerveau. Une diminution de la concentration cérébrale du DHA est observée chez les patients souffrant de maladies neurodégénératives telles que les maladies d'Alzheimer et de Parkinson. Un apport ciblé du DHA au cerveau pourrait compenser ces carences. Le DHA sanguin est transporté à travers la barrière hémato-encéphalique (BHE) plus efficacement lorsqu’il est estérifié en position sn-2 de la lysophosphatidylcholine (lysoPC). Nous produisons au laboratoire une phosphatidylcholine structurée pour mimer la 2-docosahexaénoyl-lysoPC (lysoPC-DHA), nommée AceDoPC (1-acétyl,2-docosahexaénoyl-glycérophosphocholine), qui peut être considérée comme une forme stabilisée de la lysoPC-DHA physiologique et qui est neuroprotectrice dans l’accident ischémique cérébral. Le premier objectif de ce travail a été de comparer le passage du DHA marqué non estérifié ou estérifié dans l’AceDoPC ou dans une phosphatidylcholine (PC-DHA), lié au plasma, à travers un modèle in vitro de la BHE. Nous montrons un passage préférentiel à travers la monocouche endothéliale et une captation préférentielle par les cellules gliales de l’AceDoPC comparativement au DHA non estérifié et à la PC-DHA. Le deuxième objectif de ce travail a été de confirmer si cette préférence pour la forme AceDoPC était également observée in vivo. Nous avons donc étudié, chez des rats âgés de 20 jours, la captation cérébrale des différentes formes d’apport du DHA précédemment utilisées (DHA, AceDoPC, PC-DHA). Nous démontrons que l’AceDoPC apporte le DHA au cerveau plus efficacement que les autres formes d’apport de DHA et que cette préférence pour l’AceDoPC est spécifique au cerveau puisqu’elle n’est pas observée pour les autres organes étudiés. L’AceDoPC est trouvée, en partie, sous forme intacte dans le cerveau. L’autoradiographie ex vivo du cerveau de rat révèle que le DHA provenant de l’AceDoPC est localisé dans des régions cérébrales spécifiques jouant un rôle important dans la mémoire et les fonctions cognitives. Enfin, en utilisant des approches de modélisation moléculaire, nous démontrons que les potentiels électrostatiques et hydrophobes sont distribués de manière très similaire au niveau des surfaces de l’AceDoPC et de la lysoPC-DHA. En conclusion, nos études montrent que l’AceDoPC est un transporteur privilégié et spécifique du DHA au cerveau. En considérant les rôles essentiels du DHA pour le cerveau, cette nouvelle approche de ciblage cérébral du DHA offre des perspectives prometteuses dans le développement de stratégies préventives et thérapeutiques pour les maladies neurologiques
Docosahexaenoic Acid (DHA) Bioavailability in Humans after Oral Intake of DHA-Containing Triacylglycerol or the Structured Phospholipid AceDoPC®
AceDoPC® is a structured glycerophospholipid that targets the brain with docosahexaenoic acid (DHA) and is neuroprotective in the experimental ischemic stroke. AceDoPC® is a stabilized form of the physiological 2-DHA-LysoPC with an acetyl group at the sn1 position; preventing the migration of DHA from the sn2 to sn1 position. In this study we aimed to know the bioavailability of 13C-labeled DHA after oral intake of a single dose of 13C-AceDoPC®, in comparison with 13C-DHA in triglycerides (TAG), using gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) to assess the 13C enrichment of DHA-containing lipids. 13C-DHA enrichment in plasma phospholipids was significantly higher after intake of AceDoPC® compared with TAG-DHA, peaking after 24 h in both cases. In red cells, 13C-DHA enrichment in choline phospholipids was comparable from both sources of DHA, with a maximum after 72 h, whereas the 13C-DHA enrichment in ethanolamine phospholipids was higher from AceDoPC® compared to TAG-DHA, and continued to increase after 144 h. Overall, our study indicates that DHA from AceDoPC® is more efficient than from TAG-DHA for a sustained accumulation in red cell ethanolamine phospholipids, which has been associated with increased brain accretion
Study of passage of a structured phospholipid "AceDoPC" through an in vitro reconstituted blood-brain barrier and its cerebral bioavailability in vivo in rats
L’acide docosahexaénoïque (DHA, 22:6n-3) est le principal acide gras oméga-3 des tissus cérébraux et est essentiel au développement et aux fonctions du cerveau. Une diminution de la concentration cérébrale du DHA est observée chez les patients souffrant de maladies neurodégénératives telles que les maladies d'Alzheimer et de Parkinson. Un apport ciblé du DHA au cerveau pourrait compenser ces carences. Le DHA sanguin est transporté à travers la barrière hémato-encéphalique (BHE) plus efficacement lorsqu’il est estérifié en position sn-2 de la lysophosphatidylcholine (lysoPC). Nous produisons au laboratoire une phosphatidylcholine structurée pour mimer la 2-docosahexaénoyl-lysoPC (lysoPC-DHA), nommée AceDoPC (1-acétyl,2-docosahexaénoyl-glycérophosphocholine), qui peut être considérée comme une forme stabilisée de la lysoPC-DHA physiologique et qui est neuroprotectrice dans l’accident ischémique cérébral. Le premier objectif de ce travail a été de comparer le passage du DHA marqué non estérifié ou estérifié dans l’AceDoPC ou dans une phosphatidylcholine (PC-DHA), lié au plasma, à travers un modèle in vitro de la BHE. Nous montrons un passage préférentiel à travers la monocouche endothéliale et une captation préférentielle par les cellules gliales de l’AceDoPC comparativement au DHA non estérifié et à la PC-DHA. Le deuxième objectif de ce travail a été de confirmer si cette préférence pour la forme AceDoPC était également observée in vivo. Nous avons donc étudié, chez des rats âgés de 20 jours, la captation cérébrale des différentes formes d’apport du DHA précédemment utilisées (DHA, AceDoPC, PC-DHA). Nous démontrons que l’AceDoPC apporte le DHA au cerveau plus efficacement que les autres formes d’apport de DHA et que cette préférence pour l’AceDoPC est spécifique au cerveau puisqu’elle n’est pas observée pour les autres organes étudiés. L’AceDoPC est trouvée, en partie, sous forme intacte dans le cerveau. L’autoradiographie ex vivo du cerveau de rat révèle que le DHA provenant de l’AceDoPC est localisé dans des régions cérébrales spécifiques jouant un rôle important dans la mémoire et les fonctions cognitives. Enfin, en utilisant des approches de modélisation moléculaire, nous démontrons que les potentiels électrostatiques et hydrophobes sont distribués de manière très similaire au niveau des surfaces de l’AceDoPC et de la lysoPC-DHA. En conclusion, nos études montrent que l’AceDoPC est un transporteur privilégié et spécifique du DHA au cerveau. En considérant les rôles essentiels du DHA pour le cerveau, cette nouvelle approche de ciblage cérébral du DHA offre des perspectives prometteuses dans le développement de stratégies préventives et thérapeutiques pour les maladies neurologiques.Docosahexaenoic acid (DHA, 22:6n-3) is the main essential omega-3 fatty acid in brain tissues required for normal brain development and function. A decrease in the cerebral concentration of DHA is observed in patients suffering from neurodegenerative diseases such as Alzheimer’s and Parkinson’s. Targeted intake of DHA to the brain could compensate for these deficiencies. Blood DHA is transported across the blood-brain barrier (BBB) more efficiently when esterified at the sn-2 position of lysophosphatidylcholine (lysoPC). We produce in the laboratory a structured phosphatidylcholine to mimic 2-docosahexaenoyl-lysoPC (lysoPC-DHA), named AceDoPC (1-acetyl,2-docosahexaenoyl-glycerophosphocholine), that may be considered as a stabilized form of the physiological lysoPC-DHA and that is neuroprotective in experimental ischemic stroke. The first objective of this work was to compare the passage of either labeled unesterified DHA or DHA esterified in AceDoPC or in phosphatidylcholine (PC-DHA), bound to plasma, through an in vitro model of the BBB. This model is constituted of a co-culture of bovine brain capillary endothelial cells and glial cells from newborn rats. We show a preferential passage through the endothelial monolayer and a preferential uptake by glial cells of AceDoPC compared to unesterified DHA and PC-DHA. We also show that AceDoPC is hydrolyzed, partly, into lysoPC-DHA and that phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are the most labeled lipid classes in endothelial cells and glial cells. AceDoPC is found, partly, as a whole molecule in the cells. The second objective of this work was to confirm whether this preference for AceDoPC was also observed in vivo. We studied, in 20 days old rats, the brain uptake of different forms of DHA previously used (DHA, AceDoPC, PC-DHA). We demonstrate that AceDoPC provided the brain with DHA more efficiently than the other forms of DHA and that this preference for AceDoPC is specific for the brain because it is not observed for other studied organs. AceDoPC is found, partly, intact in the brain. Ex vivo autoradiography of rat brain reveals that DHA provided from AceDoPC is localized in specific brain regions playing key roles in memory and cognitive functions. Finally, by using molecular modelling approaches, we demonstrate that electrostatic and hydrophobic potentials are distributed very similarly at the surfaces of AceDoPC and lysoPC-DHA. In conclusion, our studies demonstrate that AceDoPC is a privileged and specific carrier of DHA to the brain. Considering the essential roles of DHA for the brain, this new approach to target the brain with DHA offers promising perspectives in the development of preventive and therapeutic strategies for neurological diseases
Emerging Role of Phospholipids and Lysophospholipids for Improving Brain Docosahexaenoic Acid as Potential Preventive and Therapeutic Strategies for Neurological Diseases
Docosahexaenoic acid (DHA, 22:6n-3) is an omega-3 polyunsaturated fatty acid (PUFA) essential for neural development, learning, and vision. Although DHA can be provided to humans through nutrition and synthesized in vivo from its precursor alpha-linolenic acid (ALA, 18:3n-3), deficiencies in cerebral DHA level were associated with neurodegenerative diseases including Parkinson’s and Alzheimer’s diseases. The aim of this review was to develop a complete understanding of previous and current approaches and suggest future approaches to target the brain with DHA in different lipids’ forms for potential prevention and treatment of neurodegenerative diseases. Since glycerophospholipids (GPs) play a crucial role in DHA transport to the brain, we explored their biosynthesis and remodeling pathways with a focus on cerebral PUFA remodeling. Following this, we discussed the brain content and biological properties of phospholipids (PLs) and Lyso-PLs with omega-3 PUFA focusing on DHA’s beneficial effects in healthy conditions and brain disorders. We emphasized the cerebral accretion of DHA when esterified at sn-2 position of PLs and Lyso-PLs. Finally, we highlighted the importance of DHA-rich Lyso-PLs’ development for pharmaceutical applications since most commercially available DHA formulations are in the form of PLs or triglycerides, which are not the preferred transporter of DHA to the brain
State-of-the-Art Analytical Approaches for Illicit Drug Profiling in Forensic Investigations
In forensic chemistry, when investigating seized illicit drugs, the profiling or chemical fingerprinting of drugs is considered fundamental. This involves the identification, quantitation and categorization of drug samples into groups, providing investigative leads such as a common or different origin of seized samples. Further goals of drug profiling include the elucidation of synthetic pathways, identification of adulterants and impurities, as well as identification of a drug’s geographic origin, specifically for plant-derived exhibits. The aim of this state-of-art-review is to present the traditional and advanced analytical approaches commonly followed by forensic chemists worldwide for illicit drug profiling. We discussed numerous methodologies for the physical and chemical profiling of organic and inorganic impurities found in illicit drug. Applications of powerful spectroscopic and chromatographic tools for illicit drug profiling including isotope-Ratio mass spectrometry (IRMS), gas chromatography–mass spectrometry (GC-MS), gas chromatography–isotope ratio mass spectrometry (GC-IRMS), ultra-high-performance liquid chromatography (UHPLC), thin layer chromatography (TLC), liquid chromatography–mass spectrometry (LC-MS) and inductively coupled plasma-mass spectrometry (ICP-MS) were discussed. Altogether, the techniques covered in this paper to profile seized illicit drugs could aid forensic chemists in selecting and applying a suitable method to extract valuable profiling data
Docosahexaenoic acid-loaded nanoparticles: A state-of-the-art of preparation methods, characterization, functionality, and therapeutic applications
Docosahexaenoic acid (DHA, C22:6 n-3), an omega-3 polyunsaturated fatty acid, offers several beneficial effects. DHA helps in reducing depression, autoimmune diseases, rheumatoid arthritis, attention deficit hyperactivity syndrome, and cardiovascular diseases. It can stimulate the development of brain and nerve, alleviate lipids metabolism-related disorders, and enhance vision development. However, DHA susceptibility to chemical oxidation, poor water solubility, and unpleasant order could restrict its applications for nutritional and therapeutic purposes. To avoid these drawbacks and enhance its bioavailability, DHA can be encapsulated using an effective delivery system. Several encapsulation methods are recognized, and DHA-loaded nanoparticles have demonstrated numerous benefits. In clinical studies, positive influences on the development of several diseases have been reported, but some assumptions are conflicting and need more exploration, since DHA has a systemic and not a targeted release at the required level. This might cause the applications of nanoparticles that could allow DHA release at the required level and improve its efficiency, thus resulting in a better controlling of several diseases. In the current review, we focused on researches investigating the formulation and development of DHA-loaded nanoparticles using different delivery systems, including low-density lipoprotein, zinc oxide, silver, zein, and resveratrol-stearate. Silver-DHA nanoparticles presented a typical particle size of 24Â nm with an incorporation level of 97.67Â %, while the entrapment efficiency of zinc oxide-DHA nanoparticles represented 87.3Â %. By using zein/Poly (lactic-co-glycolic acid) stabilized nanoparticles, DHA's encapsulation level reached 84.6Â %. We have also highlighted the characteristics, functionality and medical implementation of these nanoparticles in the treatment of inflammations, brain disorders, diabetes as well as hepatocellular carcinoma
Investigation of Lysophospholipids-DHA transport across an in vitro human model of blood brain barrier
International audienceSeveral studies emphasized on the preventive and therapeutic potential of Docosahexaenoic Acid (DHA, 22:6n-3) supplementation in chronic and age-related disorders including neurodegenerative diseases. Researchers principally studied the cerebral accretion of Lysophosphatidylcholine (LysoPC-DHA), the furthermost vital Lysophospholipid-DHA (LysoPL-DHA) in blood plasma. Nevertheless, the cerebral bioavailability of other LysoPL-DHA forms including Lysophosphatidylethanolamine (LysoPE-DHA), and Lysophosphatidylserine (LysoPS-DHA) were not extensively examined even though their vital biological functions in the brain. Hence, the aim of the present study was to evaluate the toxicity and transport of DHA in comparison to several LysoPL-DHA including LysoPC-DHA, LysoPE-DHA and LysoPS-DHA across a human model of blood-brain barrier (BBB). The human brain-like endothelial cells (hBLECs) monolayer tightness was evaluated by the parallel assessment of the permeability of fluorescent marker Lucifer yellow (LY) and revealed the absence of toxicity of non-esterified DHA and all LysoPL-DHA towards hBLECs. LysoPC-DHA, LysoPE-DHA and LysoPS-DHA displayed a higher recovery in the abluminal medium in comparison to non-esterified DHA at 30, 60 and 120 min post-incubation. Among all, LysoPS-DHA revealed the highest apparent coefficient permeability (Papp) 85.87 ± 4.24 x 10 -6 cm s -1 and was significantly different than DHA, LysoPC-DHA and LysoPE-DHA. More interestingly, when studying the time course of Papp of DHA, LysoPC-DHA and LysoPE-DHA, at different post-incubation time, this permeability decreases with time especially for LysoPC-DHA and LysoPE-DHA, not for DHA. Furthermore, LysoPS-DHA exhibited the highest intracellular accumulation (10.39 ± 0.49 %) in hBLECs in comparison to all other tested lipids. Finally, differences in 3D structures and molecular electrostatic potential maps calculation of LysoPL-DHA could explain the dissimilar cerebral uptake of LysoPL-DHA. Altogether, our findings raise the novel hypothesis that LysoPS-DHA may represent a preferred physiological carrier of DHA to the brain.</div
AceDoPC, a structured phospholipid to target the brain with docosahexaenoic acid
AceDoPC® is a structured phospholipid or acetyl-LysoPC-DHA made to prevent docosahexaenoic acyl migrating from the sn-2 to sn-1 position of the phospholipid, however keeping the main physical-chemical properties of LysoPC-DHA. As previously shown for LysoPC-DHA, AceDoPC® allows DHA crossing a re-constituted blood-brain barrier with higher efficiency than non-esterified DHA or PC-DHA. When injected to blood of rats, AceDoPC® is processed within the brain to deliver DHA to phosphatidyl-choline and -ethanolamine. When injected to rats following the induction of an ischemic stroke, AceDoPC® prevents the extension of brain lesions more efficiently than DHA. Overall, these properties make AceDoPC® a promising phospholipid carrier of DHA to the brain
AceDoPC, a structured phospholipid to target the brain with docosahexaenoic acid
International audienceAceDoPCr (R) is a structured phospholipid or acetyl-LysoPC-DHA made to prevent docosahexaenoic acyl migrating from the sn-2 to sn-1 position of the phospholipid, however keeping the main physical-chemical properties of LysoPC-DHA. As previously shown for LysoPC-DHA, AceDoPCr (R) allows DHA crossing a re-constituted blood-brain barrier with higher efficiency than non-esterified DHA or PC-DHA. When injected to blood of rats, AceDoPCr (R) is processed within the brain to deliver DHA to phosphatidyl-choline and -ethanolamine. When injected to rats following the induction of an ischemic stroke, AceDoPCr (R) prevents the extension of brain lesions more efficiently than DHA. Overall, these properties make AceDoPCr (R) a promising phospholipid carrier of DHA to the brain
Biological properties of a DHA-containing structured phospholipid (AceDoPC) to target the brain.
International audience: 1-acetyl,2-docosahexaenoyl-glycerophosphocholine (AceDoPC) has been made to prevent docosahexaenoyl (DHA) to move to the sn-1 position as it rapidly does when present in 1-lyso,2-docosahexaenoyl-GPC (lysoPC-DHA), an efficient DHA transporter to the brain. When incubated with human blood, AceDoPC behaves closer to lysoPC-DHA than PC-DHA in terms of binding to plasma albumin and lipoproteins, and DHA incorporation into platelets and red cells. In addition, AceDoPC prevents more efficiently the deleterious effects of the experimental stroke in rats than does unesterified DHA. Also, AceDoPC inhibits platelet-activating factor-induced human blood platelet aggregation. Overall, AceDoPC might act as an efficient DHA transporter to the brain, and as a neuro-protective agent by itself