7 research outputs found

    Pharmaceutical pollution of the world's rivers

    Get PDF
    Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world's rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals

    Zebrafish (Danio rerio) as a model organism for screening nephrotoxic chemicals and related mechanisms

    No full text
    © 2022 The AuthorsBecause of essential role in homeostasis of the body fluid and excretion of wastes, kidney damage can lead to severe impacts on health and survival of humans. For most chemicals, nephrotoxic potentials and associated mechanisms are unclear. Hence, fast and sensitive screening measures for nephrotoxic chemicals are required. In this study, the utility of zebrafish (Danio rerio) was evaluated for the investigation of chemical-induced kidney toxicity and associated modes of toxicity, based on the literature review. Zebrafish has a well-understood biology, and many overlapping physiological characteristics with mammals. One such characteristic is its kidneys, of which histology and functions are similar to those of mammals, although unique differences of zebrafish kidneys, such as kidney marrow, should be noted. Moreover, the zebrafish kidney is simpler in structure and easy to observe. For these advantages, zebrafish has been increasingly used as an experimental model for screening nephrotoxicity of chemicals and for understanding related mechanisms. Multiple endpoints of zebrafish model, from functional level, i.e., glomerular filtration, to transcriptional changes of key genes, have been assessed to identify chemical-induced kidney toxicities, and to elucidate underlying mechanisms. The most frequently studied mechanisms of chemical-induced nephrotoxicity in zebrafish include oxidative stress, inflammation, DNA damage, apoptosis, fibrosis, and cell death. To date, several pharmaceuticals, oxidizing agents, natural products, biocides, alcohols, and consumer chemicals have been demonstrated to exert different types of kidney toxicities in zebrafish. The present review shows that zebrafish model can be efficiently employed for quick and reliable assessment of kidney damage potentials of chemicals, and related toxic mechanisms. The toxicological information obtained from this model can be utilized for identification of nephrotoxic chemicals and hence for protection of public health.N

    Placental Transfer and Composition of Perfluoroalkyl Substances (PFASs): A Korean Birth Panel of Parent-Infant Triads

    No full text
    Exposure to perfluoroalkyl substances (PFASs) is of public concern due to their persistent exposure and adverse health effects. Placental transfer of PFASs is an important excretion pathway of these chemicals in pregnant women and exposure route in fetuses. We measured PFAS concentrations in maternal, paternal, and umbilical cord serum collected from 62 pregnant Korean women and matched biological fathers of the fetuses. Placental transfer rates (cord to maternal serum ratio) of PFASs were also calculated. Demographics and pregnancy-related factors determining the placental transfer rates were identified using linear regression models. Maternal, paternal, and cord serum showed different PFASs compositions. Among the PFASs, perfluorooctane sulfonate (PFOS) showed the highest concentrations in maternal and paternal serum, while perfluorooctanoic acid (PFOA) showed the highest concentration in cord serum. There was a higher proportion of perfluoroalkyl carboxylic acids (PFCAs) with 9–12 carbon chains than those with 13–14 carbon chains in maternal and paternal serum, but this proportion was in the opposite direction in cord serum. PFOA and perfluorohexane sulfonate (PFHxS) had higher placental transfer rates (means of 0.32 and 0.36, respectively) than PFOS (mean of 0.12), which is in line with the results of previous studies. Gestational age and birth weight were positively associated with placental transfer rate of PFOA, PFHxS, and PFOS, while pre-pregnant BMI and weight were inversely associated with PFOS. This study showed that placental transfer of PFASs differs by compounds and is associated with pregnancy-related factors. Further studies on novel PFASs are warranted for Korean pregnant women

    Thyroid Hormone Disruption by Water-Accommodated Fractions of Crude Oil and Sediments Affected by the <i>Hebei Spirit</i> Oil Spill in Zebrafish and GH3 Cells

    No full text
    A crude oil and the coastal sediments that were affected by the <i>Hebei Spirit</i> Oil Spill (HSOS) of Taean, Korea were investigated for thyroid hormone disruption potentials. Water-accommodated fractions (WAFs) of Iranian Heavy crude oil, the major oil type of HSOS, and the porewater or leachate of sediment samples collected along the coast line of Taean were tested for thyroid disruption using developing zebrafish and/or rat pituitary GH3 cells. Major polycyclic aromatic hydrocarbons (PAHs) and their alkylated forms were also measured from the test samples. In zebrafish larvae, significant decreases in whole-body thyroxine (T<sub>4</sub>) and triiodothyronine (T<sub>3</sub>) levels, along with transcriptional changes of thyroid regulating genes, were observed following 5 day exposure to WAFs. In GH3 cells, transcriptions of thyroid regulating genes were influenced following the exposure to the sediment samples, but the pattern of the regulatory change was different from those observed from the WAFs. Composition of PAHs and their alkylated homologues in the WAFs could partly explain this difference. Our results clearly demonstrate that WAFs of crude oil can disrupt thyroid function of larval zebrafish. Sediment samples also showed thyroid disrupting potentials in the GH3 cell, even several years after the oil spill. Long-term ecosystem consequences of thyroid hormone disruption due to oil spill deserve further investigation

    Pharmaceutical pollution of the world&apos;s rivers

    No full text
    Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world&apos;s rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals.N

    Pharmaceutical pollution of the world's rivers

    No full text
    Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world's rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals
    corecore