414 research outputs found

    Eccentricities of Double Neutron Star Binaries

    Full text link
    Recent pulsar surveys have increased the number of observed double neutron stars (DNS) in our galaxy enough so that observable trends in their properties are starting to emerge. In particular, it has been noted that the majority of DNS have eccentricities less than 0.3, which are surprisingly low for binaries that survive a supernova explosion that we believe imparts a significant kick to the neutron star. To investigate this trend, we generate many different theoretical distributions of DNS eccentricities using Monte Carlo population synthesis methods. We determine which eccentricity distributions are most consistent with the observed sample of DNS binaries. In agreement with Chaurasia & Bailes (2005), assuming all double neutron stars are equally as probable to be discovered as binary pulsars, we find that highly eccentric, coalescing DNS are less likely to be observed because of their accelerated orbital evolution due to gravitational wave emission and possible early mergers. Based on our results for coalescing DNS, we also find that models with vanishingly or moderately small kicks (sigma < about 50 km/s) are inconsistent with the current observed sample of such DNS. We discuss the implications of our conclusions for DNS merger rate estimates of interest to ground-based gravitational-wave interferometers. We find that, although orbital evolution due to gravitational radiation affects the eccentricity distribution of the observed sample, the associated upwards correction factor to merger rate estimates is rather small (typically 10-40%).Comment: 9 pages, 8 figures, accepted by ApJ. Figures reduced and some content changed, references adde

    Equipotential Surfaces and Lagrangian points in Non-synchronous, Eccentric Binary and Planetary Systems

    Get PDF
    We investigate the existence and properties of equipotential surfaces and Lagrangian points in non-synchronous, eccentric binary star and planetary systems under the assumption of quasi-static equilibrium. We adopt a binary potential that accounts for non-synchronous rotation and eccentric orbits, and calculate the positions of the Lagrangian points as functions of the mass ratio, the degree of asynchronism, the orbital eccentricity, and the position of the stars or planets in their relative orbit. We find that the geometry of the equipotential surfaces may facilitate non-conservative mass transfer in non-synchronous, eccentric binary star and planetary systems, especially if the component stars or planets are rotating super-synchronously at the periastron of their relative orbit. We also calculate the volume-equivalent radius of the Roche lobe as a function of the four parameters mentioned above. Contrary to common practice, we find that replacing the radius of a circular orbit in the fitting formula of Eggleton (1983) with the instantaneous distance between the components of eccentric binary or planetary systems does not always lead to a good approximation to the volume-equivalent radius of the Roche-lobe. We therefore provide generalized analytic fitting formulae for the volume-equivalent Roche lobe radius appropriate for non-synchronous, eccentric binary star and planetary systems. These formulae are accurate to better than 1% throughout the relevant 2-dimensional parameter space that covers a dynamic range of 16 and 6 orders of magnitude in the two dimensions.Comment: 12 pages, 10 figures, 2 Tables, Accepted by the Astrophysical Journa

    The Role of Helium Stars in the Formation of Double Neutron Stars

    Get PDF
    We have calculated the evolution of 60 model binary systems consisting of helium stars in the mass range of M_He= 2.5-6Msun with a 1.4Msun neutron star companion to investigate the formation of double neutron star systems.Orbital periods ranging from 0.09 to 2 days are considered, corresponding to Roche lobe overflow starting from the helium main sequence to after the ignition of carbon burning in the core. We have also examined the evolution into a common envelope phase via secular instability, delayed dynamical instability, and the consequence of matter filling the neutron star's Roche lobe. The survival of some close He-star neutron-star binaries through the last mass transfer episode (either dynamically stable or unstable mass transfer phase) leads to the formation of extremely short-period double neutron star systems (with P<~0.1days). In addition, we find that systems throughout the entire calculated mass range can evolve into a common envelope phase, depending on the orbital period at the onset of mass transfer. The critical orbital period below which common envelope evolution occurs generally increases with M_He. In addition, a common envelope phase may occur during a short time for systems characterized by orbital periods of 0.1-0.5 days at low He-star masses (~ 2.6-3.3Msun). The existence of a short-period population of double neutron stars increases the predicted detection rate of inspiral events by ground-based gravitational-wave detectors and impacts their merger location in host galaxies and their possible role as gamma-ray burst progenitors. We use a set of population synthesis calculations and investigate the implications of the mass-transfer results for the orbital properties of DNS populations.Comment: 30 pages, Latex (AASTeX), 1 table, 8 figures. To appear in ApJ, v592 n1 July 20, 200

    Evolution of Neutron-Star, Carbon-Oxygen White-Dwarf Binaries

    Get PDF
    At least one, but more likely two or more, eccentric neutron-star, carbon-oxygen white-dwarf binaries with an unrecycled pulsar have been observed. According to the standard scenario for evolving neutron stars which are recycled in common envelope evolution we expect to observe \gsim 50 such circular neutron star-carbon oxygen white dwarf binaries, since their formation rate is roughly equal to that of the eccentric binaries and the time over which they can be observed is two orders of magnitude longer, as we shall outline. We observe at most one or two such circular binaries and from that we conclude that the standard scenario must be revised. Introducing hypercritical accretion into common envelope evolution removes the discrepancy by converting the neutron star into a black hole which does not emit radio waves, and therefore would not be observed.Comment: 25 pages, 1 figure, accepted in Ap

    On a mechanism for enhancing magnetic activity in tidally interacting binaries

    Get PDF
    We suggest a mechanism for enhancing magnetic activity in tidally interacting binaries. We suppose that the deviation of the primary star from spherical symmetry due to the tidal influence of the companion leads to stellar pulsation in its fundamental mode. It is shown that stellar radial pulsation amplifies torsional Alfv{\'e}n waves in a dipole-like magnetic field, buried in the interior, according to the recently proposed swing wave-wave interaction (Zaqarashvili 2001). Then amplified Alfv{\'e}n waves lead to the onset of large-scale torsional oscillations, and magnetic flux tubes arising towards the surface owing to magnetic buoyancy diffuse into the atmosphere producing enhanced chromospheric and coronal emission.Comment: Accepted in Ap

    Hyperfast pulsars as the remnants of massive stars ejected from young star clusters

    Get PDF
    Recent proper motion and parallax measurements for the pulsar PSR B1508+55 indicate a transverse velocity of ~1100 km/s, which exceeds earlier measurements for any neutron star. The spin-down characteristics of PSR B1508+55 are typical for a non-recycled pulsar, which implies that the velocity of the pulsar cannot have originated from the second supernova disruption of a massive binary system. The high velocity of PSR B1508+55 can be accounted for by assuming that it received a kick at birth or that the neutron star was accelerated after its formation in the supernova explosion. We propose an explanation for the origin of hyperfast neutron stars based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star which attained its peculiar velocity (similar to that of the pulsar) in the course of a strong dynamical three- or four-body encounter in the core of dense young star cluster. To check this hypothesis we investigated three dynamical processes involving close encounters between: (i) two hard massive binaries, (ii) a hard binary and an intermediate-mass black hole, and (iii) a single star and a hard binary intermediate-mass black hole. We find that main-sequence O-type stars cannot be ejected from young massive star clusters with peculiar velocities high enough to explain the origin of hyperfast neutron stars, but lower mass main-sequence stars or the stripped helium cores of massive stars could be accelerated to hypervelocities. Our explanation for the origin of hyperfast pulsars requires a very dense stellar environment of the order of 10^6 -10^7 stars pc^{-3}. Although such high densities may exist during the core collapse of young massive star clusters, we caution that they have never been observed.Comment: 11 pages, 6 figures, 1 table, accepted to MNRA

    Intermediate-mass star models with different helium and metal contents

    Get PDF
    We present a comprehensive theoretical investigation of the evolutionary properties of intermediate-mass stars. The evolutionary sequences were computed from the Zero Age Main Sequence up to the central He exhaustion and often up to the phases which precede the carbon ignition or to the reignition of the H-shell which marks the beginning of the thermal pulse phase. The evolutionary tracks were constructed by adopting a wide range of stellar masses (3≀3\leq\msun≀15\leq15) and chemical compositions. In order to account for current uncertainties on the He to heavy elements enrichment ratio, the stellar models were computed by adopting at Z=0.02 two different He contents (Y=0.27, 0.289) and at Z=0.04 three different He contents (Y=0.29, 0.34, and 0.37). To supply a homogeneous evolutionary scenario which accounts for young Magellanic stellar systems the calculations were also extended toward lower metallicities (Z=0.004, Z=0.01), by adopting different initial He abundances. We evaluated for both solar (Z=0.02) and super-metal-rich (SMR, Z=0.04) models the transition mass MupM^{up} between the stellar structures igniting carbon and those which develop a full electron degeneracy inside the CO core. This evolutionary scenario allows us to investigate in detail the properties of classical Cepheids. In particular, we find that the range of stellar masses which perform the blue loop during the central He-burning phase narrows when moving toward metal-rich and SMR structures.Comment: 25 pages, 10 figures (4 postscript + 6 gif files), 7 postscript tables. accepted for publication on ApJ (November 2000

    How Massive Single Stars End their Life

    Get PDF
    How massive stars die -- what sort of explosion and remnant each produces -- depends chiefly on the masses of their helium cores and hydrogen envelopes at death. For single stars, stellar winds are the only means of mass loss, and these are chiefly a function of the metallicity of the star. We discuss how metallicity, and a simplified prescription for its effect on mass loss, affects the evolution and final fate of massive stars. We map, as a function of mass and metallicity, where black holes and neutron stars are likely to form and where different types of supernovae are produced. Integrating over an initial mass function, we derive the relative populations as a function of metallicity. Provided single stars rotate rapidly enough at death, we speculate upon stellar populations that might produce gamma-ray bursts and jet-driven supernovae.Comment: 24 pages, 9 figues, submitted to Ap

    A New Class of High-Mass X-ray Binaries: Implications for Core Collapse and Neutron-Star Recoil

    Get PDF
    We investigate an interesting new class of high-mass X-ray binaries (HMXBs) with long orbital periods (P_orb > 30 days) and low eccentricities (e <~ 0.2). The orbital parameters suggest that the neutron stars in these systems did not receive a large impulse, or ``kick,'' at the time of formation. We develop a self-consistent phenomenological picture wherein the neutron stars born in the observed wide HMXBs receive only a small kick (<~ 50 km/s), while neutron stars born in isolation, in the majority of low-mass X-ray binaries, or in many of the well-known HMXBs with P_orb <~ 30 days receive the conventional large kicks, with a mean speed of ~ 300 km/s. We propose that the magnitude of the natal kick to a neutron star born in a binary system depends on the rotation rate of the pre-collapse core. We further suggest that the rotation rate of the core is a strong, well-defined function of the evolutionary path of the progenitor star.Comment: 13 pages, 5 figures (2 color), submitted to Ap
    • 

    corecore