87 research outputs found

    Koilocytes indicate a role for human papilloma virus in breast cancer

    Get PDF
    Background: High-risk human papilloma viruses (HPVs) are candidates as causal viruses in breast cancer. The scientific challenge is to determine whether HPVs are causal and not merely passengers or parasites. Studies of HPV-related koilocytes in breast cancer offer an opportunity to address this crucial issue. Koilocytes are epithelial cells characterised by perinuclear haloes surrounding condensed nuclei and are commonly present in cervical intraepithelial neoplasia. Koilocytosis is accepted as pathognomonic (characteristic of a particular disease) of HPV infection. The aim of this investigation is to determine whether putative koilocytes in normal and malignant breast tissues are because of HPV infection. Methods: Archival formalin-fixed normal and malignant breast specimens were investigated by histology, in situ PCR with confirmation of the findings by standard PCR and sequencing of the products, plus immunohistochemistry to identify HPV E6 oncoproteins. Results: human papilloma virus-associated koilocytes were present in normal breast skin and lobules and in the breast skin and cancer tissue of patients with ductal carcinoma in situ (DCIS) and invasive ductal carcinomas (IDCs). Interpretation: As koilocytes are known to be the precursors of some HPV-associated cervical cancer, it follows that HPVs may be causally associated with breast cancer.6 page(s

    Histone Deacetylase 3 Depletion in Osteo/Chondroprogenitor Cells Decreases Bone Density and Increases Marrow Fat

    Get PDF
    Histone deacetylase (Hdac)3 is a nuclear enzyme that contributes to epigenetic programming and is required for embryonic development. To determine the role of Hdac3 in bone formation, we crossed mice harboring loxP sites around exon 7 of Hdac3 with mice expressing Cre recombinase under the control of the osterix promoter. The resulting Hdac3 conditional knockout (CKO) mice were runted and had severe deficits in intramembranous and endochondral bone formation. Calvarial bones were significantly thinner and trabecular bone volume in the distal femur was decreased 75% in the Hdac3 CKO mice due to a substantial reduction in trabecular number. Hdac3-CKO mice had fewer osteoblasts and more bone marrow adipocytes as a proportion of tissue area than their wildtype or heterozygous littermates. Bone formation rates were depressed in both the cortical and trabecular regions of Hdac3 CKO femurs. Microarray analyses revealed that numerous developmental signaling pathways were affected by Hdac3-deficiency. Thus, Hdac3 depletion in osterix-expressing progenitor cells interferes with bone formation and promotes bone marrow adipocyte differentiation. These results demonstrate that Hdac3 inhibition is detrimental to skeletal health

    Histone deacetylase 1 and 2 differentially regulate apoptosis by opposing effects on extracellular signal-regulated kinase 1/2

    Get PDF
    Histone deacetylases (HDACs) are epigenetic regulators that are important for the control of various pathophysiological events. We found that HDAC inhibitors completely abolished transforming growth factor-β1 (TGF-β1)-induced apoptosis in AML-12 and primary mouse hepatocytes. Expression of a dominant-negative mutant of HDAC1 or downregulation of HDAC1 by RNAi both suppressed TGF-β1-induced apoptosis. In addition, overexpression of HDAC1 enhanced TGF-β1-induced apoptosis, and the rescue of HDAC1 expression in HDAC1 RNAi cells restored the apoptotic response of cells to TGF-β1. These data indicate that HDAC1 functions as a proapoptotic factor in TGF-β1-induced apoptosis. In contrast, downregulation of HDAC2 by RNAi increased spontaneous apoptosis and markedly enhanced TGF-β1-induced apoptosis, suggesting that HDAC2 has a reciprocal role in controlling cell survival. Furthermore, inhibition of extracellular signal-regulated kinase 1/2 (ERK1/2) by MEK1 inhibitor PD98059 or expression of a kinase-dead mutant of MEK1 restored the apoptotic response to TGF-β1 in HDAC1 RNAi cells. Strikingly, HDAC2 RNAi caused an inhibition of ERK1/2, and the spontaneous apoptosis can be abolished by reactivation of ERK1/2. Taken together, our data demonstrate that HDAC1 and 2 reciprocally affect cell viability by differential regulation of ERK1/2; these observations provide insight into the roles and potential mechanisms of HDAC1 and 2 in apoptosis

    Curcumin-induced HDAC inhibition and attenuation of medulloblastoma growth in vitro and in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Medulloblastoma is the most common brain tumor in children, and its prognosis is worse than for many other common pediatric cancers. Survivors undergoing treatment suffer from serious therapy-related side effects. Thus, it is imperative to identify safer, effective treatments for medulloblastoma. In this study we evaluated the anti-cancer potential of curcumin in medulloblastoma by testing its ability to induce apoptosis and inhibit tumor growth <it>in vitro </it>and <it>in vivo </it>using established medulloblastoma models.</p> <p>Methods</p> <p>Using cultured medulloblastoma cells, tumor xenografts, and the Smo/Smo transgenic medulloblastoma mouse model, the antitumor effects of curcumin were tested <it>in vitro </it>and <it>in vivo</it>.</p> <p>Results</p> <p>Curcumin induced apoptosis and cell cycle arrest at the G2/M phase in medulloblastoma cells. These effects were accompanied by reduced histone deacetylase (HDAC) 4 expression and activity and increased tubulin acetylation, ultimately leading to mitotic catastrophe. In <it>in vivo </it>medulloblastoma xenografts, curcumin reduced tumor growth and significantly increased survival in the Smo/Smo transgenic medulloblastoma mouse model.</p> <p>Conclusions</p> <p>The <it>in vitro </it>and <it>in vivo </it>data suggest that curcumin has the potential to be developed as a therapeutic agent for medulloblastoma.</p

    The Cardiac Transcription Network Modulated by Gata4, Mef2a, Nkx2.5, Srf, Histone Modifications, and MicroRNAs

    Get PDF
    The transcriptome, as the pool of all transcribed elements in a given cell, is regulated by the interaction between different molecular levels, involving epigenetic, transcriptional, and post-transcriptional mechanisms. However, many previous studies investigated each of these levels individually, and little is known about their interdependency. We present a systems biology study integrating mRNA profiles with DNA–binding events of key cardiac transcription factors (Gata4, Mef2a, Nkx2.5, and Srf), activating histone modifications (H3ac, H4ac, H3K4me2, and H3K4me3), and microRNA profiles obtained in wild-type and RNAi–mediated knockdown. Finally, we confirmed conclusions primarily obtained in cardiomyocyte cell culture in a time-course of cardiac maturation in mouse around birth. We provide insights into the combinatorial regulation by cardiac transcription factors and show that they can partially compensate each other's function. Genes regulated by multiple transcription factors are less likely differentially expressed in RNAi knockdown of one respective factor. In addition to the analysis of the individual transcription factors, we found that histone 3 acetylation correlates with Srf- and Gata4-dependent gene expression and is complementarily reduced in cardiac Srf knockdown. Further, we found that altered microRNA expression in Srf knockdown potentially explains up to 45% of indirect mRNA targets. Considering all three levels of regulation, we present an Srf-centered transcription network providing on a single-gene level insights into the regulatory circuits establishing respective mRNA profiles. In summary, we show the combinatorial contribution of four DNA–binding transcription factors in regulating the cardiac transcriptome and provide evidence that histone modifications and microRNAs modulate their functional consequence. This opens a new perspective to understand heart development and the complexity cardiovascular disorders

    The genetic epidemiology of joint shape and the development of osteoarthritis

    Get PDF
    Congruent, low-friction relative movement between the articulating elements of a synovial joint is an essential pre-requisite for sustained, efficient, function. Where disorders of joint formation or maintenance exist, mechanical overloading and osteoarthritis (OA) follow. The heritable component of OA accounts for ~ 50% of susceptible risk. Although almost 100 genetic risk loci for OA have now been identified, and the epidemiological relationship between joint development, joint shape and osteoarthritis is well established, we still have only a limited understanding of the contribution that genetic variation makes to joint shape and how this modulates OA risk. In this article, a brief overview of synovial joint development and its genetic regulation is followed by a review of current knowledge on the genetic epidemiology of established joint shape disorders and common shape variation. A summary of current genetic epidemiology of OA is also given, together with current evidence on the genetic overlap between shape variation and OA. Finally, the established genetic risk loci for both joint shape and osteoarthritis are discussed
    corecore