1,030 research outputs found

    Magnon Mediated Electric Current Drag Across a Ferromagnetic Insulator Layer

    Full text link
    In a semiconductor hererostructure, the Coulomb interaction is responsible for the electric current drag between two 2D electron gases across an electron impenetrable insulator. For two metallic layers separated by a ferromagnetic insulator (FI) layer, the electric current drag can be mediated by a nonequilibrium magnon current of the FI. We determine the drag current by using the semiclassical Boltzmann approach with proper boundary conditions of electrons and magnons at the metal-FI interface.Comment: 13 pages, 2 figures: to appear in PR

    Precision asteroseismology of the pulsating white dwarf GD 1212 using a two-wheel-controlled Kepler spacecraft

    Get PDF
    We present a preliminary analysis of the cool pulsating white dwarf GD 1212, enabled by more than 11.5 days of space-based photometry obtained during an engineering test of the two-reaction-wheel-controlled Kepler spacecraft. We detect at least 19 independent pulsation modes, ranging from 828.2-1220.8 s, and at least 17 nonlinear combination frequencies of those independent pulsations. Our longest uninterrupted light curve, 9.0 days in length, evidences coherent difference frequencies at periods inaccessible from the ground, up to 14.5 hr, the longest-period signals ever detected in a pulsating white dwarf. These results mark some of the first science to come from a two-wheel-controlled Kepler spacecraft, proving the capability for unprecedented discoveries afforded by extending Kepler observations to the ecliptic.Comment: 8 pages, 4 figures, accepted for publication in The Astrophysical Journa

    Exposure of U.S. National Parks to land use and climate change 1900-2100

    Get PDF
    Many protected areas may not be adequately safeguarding biodiversity from human activities on surrounding lands and global change. The magnitude of such change agents and the sensitivity of ecosystems to these agents vary among protected areas. Thus, there is a need to assess vulnerability across networks of protected areas to determine those most at risk and to lay the basis for developing effective adaptation strategies. We conducted an assessment of exposure of U.S. National Parks to climate and land use change and consequences for vegetation communities. We first defined park protected-area centered ecosystems (PACEs) based on ecological principles. We then drew on existing land use, invasive species, climate, and biome data sets and models to quantify exposure of PACEs from 1900 through 2100. Most PACEs experienced substantial change over the 20th century (.740% average increase in housing density since 1940, 13% of vascular plants are presently nonnative, temperature increase of 18C/100 yr since 1895 in 80% of PACEs), and projections suggest that many of these trends will continue at similar or increasingly greater rates (255% increase in housing density by 2100, temperature increase of 2.58–4.58C/100 yr, 30% of PACE areas may lose their current biomes by 2030). In the coming century, housing densities are projected to increase in PACEs at about 82% of the rate of since 1940. The rate of climate warming in the coming century is projected to be 2.5–5.8 times higher than that measured in the past century. Underlying these averages, exposure of individual park PACEs to change agents differ in important ways. For example, parks such as Great Smoky Mountains exhibit high land use and low climate exposure, others such as Great Sand Dunes exhibit low land use and high climate exposure, and a few such as Point Reyes exhibit high exposure on both axes. The cumulative and synergistic effects of such changes in land use, invasives, and climate are expected to dramatically impact ecosystem function and biodiversity in national parks. These results are foundational to developing effective adaptation strategies and suggest policies to better safeguard parks under broad-scale environmental change

    The AAMC Standardized Video Interview: Reactions and Use by Residency Programs During the 2018 Application Cycle

    Get PDF
    PURPOSE: To evaluate how emergency medicine (EM) residency programs perceived and used Association of American Medical Colleges (AAMC) SVI total scores and videos during the Electronic Residency Application Service (ERAS) 2018 cycle. METHOD: Study 1 (November 2017) used a program director survey to evaluate user reactions to the SVI following the first year of operational use. Study 2 (January 2018) analyzed program usage of SVI video responses using data collected through the AAMC Program Director\u27s Workstation. RESULTS: Results from the survey (125/175 programs, 71% response rate) and video usage analysis suggested programs viewed videos out of curiosity and to understand the range of SVI total scores. Programs were more likely to view videos for attendees of U.S. MD-granting medical schools and applicants with higher United States Medical Licensing Examination Step 1 scores, but there were no differences by gender or race/ethnicity. More than half of programs that did not use SVI total scores in their selection processes were unsure of how to incorporate them (36/58, 62%) and wanted additional research on utility (33/58, 57%). More than half of programs indicated being at least somewhat likely to use SVI total scores (55/97; 57%) and videos (52/99; 53%) in the future. CONCLUSIONS: Program reactions on the utility and ease of use of SVI total scores were mixed. Survey results indicate programs used the SVI cautiously in their selection processes, consistent with AAMC recommendations. Future surveys of SVI users will help the AAMC gauge improvements in user acceptance and familiarity with the SVI

    Li Induced Spin and Charge Excitations in a Spin Ladder

    Full text link
    A lithium dopant in a cuprate spin ladder acts as a vacant (non-magnetic) site accompanied by an extra hole bound by a Coulomb potential. We find that, although the undoped ladder spin gap is not essentially altered by Li doping, a dopant-magnon bound state appears within the gap. Contrary to the case of Zn-doped ladders, we predict that, in the Li-doped ladder, the spin liquid character is very robust against antiferromagnetism. We also predict the spatial dependence of the density of states in the vicinity of the dopant which could be measured by local spectroscopic probes.Comment: 4 pages, Submitted to Physical Review Letter

    Density matrix algorithm for the calculation of dynamical properties of low dimensional systems

    Full text link
    I extend the scope of the density matrix renormalization group technique developed by White to the calculation of dynamical correlation functions. As an application and performance evaluation I calculate the spin dynamics of the 1D Heisenberg chain.Comment: 4 pages + 4 figures in one Latex + 4 postscript file

    Favorable outcome of early treatment of new onset child and adolescent migraine-implications for disease modification.

    Get PDF
    There is evidence that the prevalence of migraine in children and adolescents may be increasing. Current theories of migraine pathophysiology in adults suggest activation of central cortical and brainstem pathways in conjunction with the peripheral trigeminovascular system, which ultimately results in release of neuropeptides, facilitation of central pain pathways, neurogenic inflammation surrounding peripheral vessels, and vasodilatation. Although several risk factors for frequent episodic, chronic, and refractory migraine have been identified, the causes of migraine progression are not known. Migraine pathophysiology has not been fully evaluated in children. In this review, we will first discuss the evidence that early therapeutic interventions in the child or adolescent new onset migraineur, may halt or limit progression and disability. We will then review the evidence suggesting that many adults with chronic or refractory migraine developed their migraine as children or adolescents and may not have been treated adequately with migraine-specific therapy. Finally, we will show that early, appropriate and optimal treatment of migraine during childhood and adolescence may result in disease modification and prevent progression of this disease

    Full-length messenger RNA sequences greatly improve genome annotation

    Get PDF
    Background: Annotation of eukaryotic genomes is a complex endeavor that requires the integration of evidence from multiple, often contradictory, sources. With the ever-increasing amount of genome sequence data now available, methods for accurate identification of large numbers of genes have become urgently needed. In an effort to create a set of very high-quality gene models, we used the sequence of 5,000 full-length gene transcripts from Arabidopsis to re-annotate its genome. We have mapped these transcripts to their exact chromosomal locations and, using alignment programs, have created gene models that provide a reference set for this organism. Results: Approximately 35% of the transcripts indicated that previously annotated genes needed modification, and 5% of the transcripts represented newly discovered genes. We also discovered that multiple transcription initiation sites appear to be much more common than previously known, and we report numerous cases of alternative mRNA splicing. We include a comparison of different alignment software and an analysis of how the transcript data improved the previously published annotation. Conclusions: Our results demonstrate that sequencing of large numbers of full-length transcripts followed by computational mapping greatly improves identification of the complete exon structures of eukaryotic genes. In addition, we are able to find numerous introns in the untranslated regions of the genes
    corecore