3,298 research outputs found
Classical versus Quantum Time Evolution of Densities at Limited Phase-Space Resolution
We study the interrelations between the classical (Frobenius-Perron) and the
quantum (Husimi) propagator for phase-space (quasi-)probability densities in a
Hamiltonian system displaying a mix of regular and chaotic behavior. We focus
on common resonances of these operators which we determine by blurring
phase-space resolution. We demonstrate that classical and quantum time
evolution look alike if observed with a resolution much coarser than a Planck
cell and explain how this similarity arises for the propagators as well as
their spectra. The indistinguishability of blurred quantum and classical
evolution implies that classical resonances can conveniently be determined from
quantum mechanics and in turn become effective for decay rates of quantum
correlations.Comment: 10 pages, 3 figure
Fidelity Decay as an Efficient Indicator of Quantum Chaos
Recent work has connected the type of fidelity decay in perturbed quantum
models to the presence of chaos in the associated classical models. We
demonstrate that a system's rate of fidelity decay under repeated perturbations
may be measured efficiently on a quantum information processor, and analyze the
conditions under which this indicator is a reliable probe of quantum chaos and
related statistical properties of the unperturbed system. The type and rate of
the decay are not dependent on the eigenvalue statistics of the unperturbed
system, but depend on the system's eigenvector statistics in the eigenbasis of
the perturbation operator. For random eigenvector statistics the decay is
exponential with a rate fixed precisely by the variance of the perturbation's
energy spectrum. Hence, even classically regular models can exhibit an
exponential fidelity decay under generic quantum perturbations. These results
clarify which perturbations can distinguish classically regular and chaotic
quantum systems.Comment: 4 pages, 3 figures, LaTeX; published version (revised introduction
and discussion
Entanglement in the classical limit: quantum correlations from classical probabilities
We investigate entanglement for a composite closed system endowed with a
scaling property allowing to keep the dynamics invariant while the effective
Planck constant hbar_eff of the system is varied. Entanglement increases as
hbar_eff goes to 0. Moreover for sufficiently low hbar_eff the evolution of the
quantum correlations, encapsulated for example in the quantum discord, can be
obtained from the mutual information of the corresponding \emph{classical}
system. We show this behavior is due to the local suppression of path
interferences in the interaction that generates the entanglement. This behavior
should be generic for quantum systems in the classical limit.Comment: 10 pages 3 figure
Periodic-Orbit Theory of Level Correlations
We present a semiclassical explanation of the so-called
Bohigas-Giannoni-Schmit conjecture which asserts universality of spectral
fluctuations in chaotic dynamics. We work with a generating function whose
semiclassical limit is determined by quadruplets of sets of periodic orbits.
The asymptotic expansions of both the non-oscillatory and the oscillatory part
of the universal spectral correlator are obtained. Borel summation of the
series reproduces the exact correlator of random-matrix theory.Comment: 4 pages, 1 figure (+ web-only appendix with 2 pages, 1 figure
Matrix Element Distribution as a Signature of Entanglement Generation
We explore connections between an operator's matrix element distribution and
its entanglement generation. Operators with matrix element distributions
similar to those of random matrices generate states of high multi-partite
entanglement. This occurs even when other statistical properties of the
operators do not conincide with random matrices. Similarly, operators with some
statistical properties of random matrices may not exhibit random matrix element
distributions and will not produce states with high levels of multi-partite
entanglement. Finally, we show that operators with similar matrix element
distributions generate similar amounts of entanglement.Comment: 7 pages, 6 figures, to be published PRA, partially supersedes
quant-ph/0405053, expands quant-ph/050211
Universal features of spin transport and breaking of unitary symmetries
When time-reversal symmetry is broken, quantum coherent systems with and without spin rotational symmetry exhibit the same universal behavior in their electric transport properties. We show that spin transport discriminates between these two cases. In systems with large charge conductance, spin transport is essentially insensitive to the breaking of time-reversal symmetry, while in the opposite limit of a single exit transport channel, spin currents vanish identically in the presence of time-reversal symmetry but can be turned on by breaking it with an orbital magnetic field
Finite-difference distributions for the Ginibre ensemble
The Ginibre ensemble of complex random matrices is studied. The complex
valued random variable of second difference of complex energy levels is
defined. For the N=3 dimensional ensemble are calculated distributions of
second difference, of real and imaginary parts of second difference, as well as
of its radius and of its argument (angle). For the generic N-dimensional
Ginibre ensemble an exact analytical formula for second difference's
distribution is derived. The comparison with real valued random variable of
second difference of adjacent real valued energy levels for Gaussian
orthogonal, unitary, and symplectic, ensemble of random matrices as well as for
Poisson ensemble is provided.Comment: 8 pages, a number of small changes in the tex
Fluctuations and Ergodicity of the Form Factor of Quantum Propagators and Random Unitary Matrices
We consider the spectral form factor of random unitary matrices as well as of
Floquet matrices of kicked tops. For a typical matrix the time dependence of
the form factor looks erratic; only after a local time average over a suitably
large time window does a systematic time dependence become manifest. For
matrices drawn from the circular unitary ensemble we prove ergodicity: In the
limits of large matrix dimension and large time window the local time average
has vanishingly small ensemble fluctuations and may be identified with the
ensemble average. By numerically diagonalizing Floquet matrices of kicked tops
with a globally chaotic classical limit we find the same ergodicity. As a
byproduct we find that the traces of random matrices from the circular
ensembles behave very much like independent Gaussian random numbers. Again,
Floquet matrices of chaotic tops share that universal behavior. It becomes
clear that the form factor of chaotic dynamical systems can be fully faithful
to random-matrix theory, not only in its locally time-averaged systematic time
dependence but also in its fluctuations.Comment: 12 pages, RevTEX, 4 figures in eps forma
Field quantization for chaotic resonators with overlapping modes
Feshbach's projector technique is employed to quantize the electromagnetic
field in optical resonators with an arbitray number of escape channels. We find
spectrally overlapping resonator modes coupled due to the damping and noise
inflicted by the external radiation field. For wave chaotic resonators the mode
dynamics is determined by a non--Hermitean random matrix. Upon including an
amplifying medium, our dynamics of open-resonator modes may serve as a starting
point for a quantum theory of random lasing.Comment: 4 pages, 1 figur
Universal spectral statistics in quantum graphs
We prove that the spectrum of an individual chaotic quantum graph shows
universal spectral correlations, as predicted by random--matrix theory. The
stability of these correlations with regard to non--universal corrections is
analyzed in terms of the linear operator governing the classical dynamics on
the graph.Comment: 4 pages, reftex, 1 figure, revised version to be published in PR
- …