79 research outputs found
Traffic jam on the cellular secretory pathway generated by a replication protein from a plant RNA virus
Although positive-strand RNA [(+)RNA] viruses have a limited coding capacity, they can replicate efficiently in host cells because of their ability to use host-derived proteins, membranes, lipids, and metabolites, and to rewire cellular trafficking pathways. Previously, we showed that a plant RNA virus, Red clover necrotic mosaic virus (RCNMV), hijacked Arf1 and Sar1, which are small GTPases that regulate the biogenesis of COPI and COPII vesicles, respectively, for viral RNA replication. These small GTPases are relocated from appropriate subcellular compartments to the viral RNA replication sites by p27 replication protein, which raises the possibility that RCNMV interferes with the cellular secretory pathway. Here, we examined this possibility by using green fluorescent protein-fused rice SCAMP1 and Arabidopsis LRR84A as secretory pathway marker proteins and showed that p27 inhibited the trafficking of these proteins. RCNMV-mediated inhibition of the host secretion pathway and its possible impact on plantâvirus interaction are discussed
Interactions between p27 and p88 replicase proteins of Red clover necrotic mosaic virus play an essential role in viral RNA replication and suppression of RNA silencing via the 480-kDa viral replicase complex assembly
AbstractRed clover necrotic mosaic virus (RCNMV), a positive-sense RNA virus with a bipartite genome, encodes p27 and p88 replicase proteins that are required for viral RNA replication and suppression of RNA silencing. In this study, we indentified domains in p27 and p88 responsible for their proteinâprotein interactions using in vitro pull-down assays with the purified recombinant proteins. Coimmunoprecipitation analysis in combination with blue-native polyacrylamide gel electrophoresis using mutated p27 proteins showed that both p27âp27 and p27âp88 interactions are essential for the formation of the 480-kDa complex, which has RCNMV-specific RNA-dependent RNA polymerase activity. Furthermore, we found a good correlation between the accumulated levels of the 480-kDa complex and replication levels and the suppression of RNA silencing activity. Our results indicate that interactions between RCNMV replicase proteins play an essential role in viral RNA replication and in suppressing RNA silencing via the 480-kDa replicase complex assembly
Roles of Phosphatidic Acid in Virus RNA Replication
Eukaryotic positive-strand RNA [(+)RNA] viruses are intracellular obligate parasites replicate using the membrane-bound replicase complexes that contain multiple viral and host components. To replicate, (+)RNA viruses exploit host resources and modify host metabolism and membrane organization. Phospholipase D (PLD) is a phosphatidylcholine- and phosphatidylethanolamine-hydrolyzing enzyme that catalyzes the production of phosphatidic acid (PA), a lipid second messenger that modulates diverse intracellular signaling in various organisms. PA is normally present in small amounts (less than 1% of total phospholipids), but rapidly and transiently accumulates in lipid bilayers in response to different environmental cues such as biotic and abiotic stresses in plants. However, the precise functions of PLD and PA remain unknown. Here, we report the roles of PLD and PA in genomic RNA replication of a plant (+)RNA virus, Red clover necrotic mosaic virus (RCNMV). We found that RCNMV RNA replication complexes formed in Nicotiana benthamiana contained PLDα and PLDÎČ. Gene-silencing and pharmacological inhibition approaches showed that PLDs and PLDs-derived PA are required for viral RNA replication. Consistent with this, exogenous application of PA enhanced viral RNA replication in plant cells and plant-derived cell-free extracts. We also found that a viral auxiliary replication protein bound to PA in vitro, and that the amount of PA increased in RCNMV-infected plant leaves. Together, our findings suggest that RCNMV hijacks host PA-producing enzymes to replicate
GAPDH-A Facilitates Intercellular Movement of RCNMV
The formation of virus movement protein (MP)-containing punctate structures on the cortical endoplasmic reticulum is required for efficient intercellular movement of Red clover necrotic mosaic virus (RCNMV), a bipartite positive-strand RNA plant virus. We found that these cortical punctate structures constitute a viral replication complex (VRC) in addition to the previously reported aggregate structures that formed adjacent to the nucleus. We identified host proteins that interacted with RCNMV MP in virus-infected Nicotiana benthamiana leaves using a tandem affinity purification method followed by mass spectrometry. One of these host proteins was glyceraldehyde 3-phosphate dehydrogenase-A (NbGAPDH-A), which is a component of the Calvin-Benson cycle in chloroplasts. Virus-induced gene silencing of NbGAPDH-A reduced RCNMV multiplication in the inoculated leaves, but not in the single cells, thereby suggesting that GAPDH-A plays a positive role in cell-to-cell movement of RCNMV. The fusion protein of NbGAPDH-A and green fluorescent protein localized exclusively to the chloroplasts. In the presence of RCNMV RNA1, however, the protein localized to the cortical VRC as well as the chloroplasts. Bimolecular fluorescence complementation assay and GST pulldown assay confirmed in vivo and in vitro interactions, respectively, between the MP and NbGAPDH-A. Furthermore, gene silencing of NbGAPDH-A inhibited MP localization to the cortical VRC. We discuss the possible roles of NbGAPDH-A in the RCNMV movement process
A study on evaluation method of advanced transport information system based on discrete choice analysis
Tokyo Institute of TechnologyTokyo Institute of Technolog
Fluctuation-induced phase in CsCuCl3 in transverse magnetic field: Theory
CsCuCl3 is a quantum triangular antiferromagnet, ferromagnetically stacked,
with an incommensurate (IC) structure due to a Dzyaloshinskii-Moriya
interaction. Because of the classical degeneracy caused by the frustration,
fluctuations in CsCuCl3 have extraordinarily large effects, such as the phase
transition in longitudinal magnetic field (normal to the planes, parallel to
the IC wavenumber q) and the plateau in q in transverse field (perpendicular to
q). We argue that fluctuations are responsible also for the new IC phase
discovered in transverse field near the Neel temperature T_N, by T. Werner et
al. [Solid State Commun. 102, p.609 (1997)]. We develop and analyse the
corresponding minimal Landau theory; the effects of fluctuations on the
frustration are included phenomenologically, by means of a biquadratic term.
The Landau theory gives two IC phases, one familiar from previous studies;
properties of the new IC phase, which occupies a pocket of the
temperature-field phase diagram near T_N, agree qualitatively with those of the
new phase found experimentally.Comment: 12 pages, revtex, 4 postscript figures, submitted to J. Phys:
Condens. Matte
Stress rotations and the long-term weakness of the Median Tectonic Line and the Rokko-Awaji Segment
International audienceWe used a field analysis of rock deformation microstructures and mesostructures to reconstructthe long-term orientation of stresses around two major active fault systems in Japan, the Median TectonicLine and the Rokko-Awaji Segment. Our study reveals that the dextral slip of the two fault systems, activesince the Plio-Quaternary, was preceded by fault normal extension in the Miocene and sinistral wrenching inthe Paleogene. The two fault systems deviated the regional stress field at the kilometer scale in their vicinityduring each of the three tectonic regimes. The largest deviation, found in the Plio-Quaternary, is a more faultnormal rotation of the maximum horizontal stress to an angle of 79° with the fault strands, suggesting anextremely low shear stress on the Median Tectonic Line and the Rokko-Awaji Segment. Possible causes of thislong-term stress perturbation include a nearly total release of shear stress during earthquakes, a low staticfriction coefficient, or lowelastic properties of the fault zones comparedwith the country rock. Independently ofthe preferred interpretation, the nearly fault normal orientation of the direction of maximum compressionsuggests that the mechanical properties of the fault zones are inadequate for the buildup of a pore fluidpressure sufficiently elevated to activate slip. The long-term weakness of the Median Tectonic Line and theRokko-Awaji Segment may reside in low-friction/low-elasticity materials or dynamic weakening rather than inpreearthquake fluid overpressures
Assessment of port efficiency within Latin America
The Panama Canal expansion has influenced the development of ports within the Latin America and the Caribbean (LAC) region, intending to capitalise on economic opportunities through seaborne trade. Examining port performance is essential to ascertain the PCE impact on port efficiency within the LAC region. Stochastic frontier analysis (SFA) was used to determine the technical efficiency of the 19 major ports within the LAC from 2010 to 2018. The result indicates that, among the four (4) port performance indicators (berth length, port area, the number of cranes (STS gantry and mobile), and the number of berths), the number of STS gantry cranes and berth length had the largest and most significant impact. Some ports with high technical efficiency experienced TEU losses despite port infrastructural development and privatization. The findings also revealed that the increased competition among regional and US East and Gulf Coast ports has negatively impacted some LAC ports' TEU volumes due to port proximity. The dynamism of the maritime sector, especially containerization, requires ports to implement value-added services and logistics centers in tandem with port performance indicators to remain sustainable and competitive in the maritime industry
Impact of the Panama Canal expansion on Latin American and Caribbean ports: Difference in difference (DID) method
The expanded Panama Canal opened on June 26, 2016. This expansion is the third set of locks that enabled the canal to double its capacity through the addition of new traffic lanes, which allowed neo-Panamax and some post-Panamax vessels to transit across the canal. The widening of the canal has increased maritime traffic within Latin America and the Caribbean (LAC). Major ports in the regions have made huge investments in port expansion and infrastructural development to accommodate neo-Panamax vessels. In this study, we investigated the impact of the Panama Canal expansion (PCE) on the Latin America and the Caribbean (LAC) ports by using the Difference in Difference (DID) method. This impact was evaluated for 100 major and regular ports within the three sub-regions of LAC, namely Caribbean, Central, and South America, before and after the treatment effect, that is, the PCE. The findings from the model revealed that the average container port throughput (TEUs) for the treated ports (DTrp) was more than that of the controlled ports (CONTp) with transshipment hub, Central America, and South America having 20%, 12%, and 34% growth, respectively, since the PCE (the treatment) except for the Caribbean ports (DTrp), which experienced losses of 8% within the LAC region from 2010 to 2019
- âŠ