230 research outputs found

    Facile Synthesis of Monodisperse CdS Nanocrystals via Microreaction

    Get PDF
    CdS-based nanocrystals (NCs) have attracted extensive interest due to their potential application as key luminescent materials for blue and white LEDs. In this research, the continuous synthesis of monodisperse CdS NCs was demonstrated utilizing a capillary microreactor. The enhanced heat and mass transfer in the microreactor was useful to reduce the reaction temperature and residence time to synthesize monodisperse CdS NCs. The superior stability of the microreactor and its continuous operation allowed the investigation of synthesis parameters with high efficiency. Reaction temperature was found to be a key parameter for balancing the reactivity of CdS precursors, while residence time was shown to be an important factor that governs the size and size distribution of the CdS NCs. Furthermore, variation of OA concentration was demonstrated to be a facile tuning mechanism for controlling the size of the CdS NCs. The variation of the volume percentage of OA from 10.5 to 51.2% and the variation of the residence time from 17 to 136 s facilitated the synthesis of monodisperse CdS NCs in the size range of 3.0–5.4 nm, and the NCs produced photoluminescent emissions in the range of 391–463 nm

    Identification of Autotoxic Compounds in Fibrous Roots of Rehmannia (Rehmannia glutinosa Libosch.)

    Get PDF
    Rehmannia is a medicinal plant in China. Autotoxicity has been reported to be one of the major problems hindering the consecutive monoculture of Rehmannia. However, potential autotoxins produced by the fibrous roots are less known. In this study, the autotoxicity of these fibrous roots was investigated. Four groups of autotoxic compounds from the aqueous extracts of the fibrous roots were isolated and characterized. The ethyl acetate extracts of these water-soluble compounds were further analyzed and separated into five fractions. Among them, the most autotoxic fraction (Fr 3) was subjected to GC/MS analysis, resulting in 32 identified compounds. Based on literature, nine compounds were selected for testing their autotoxic effects on radicle growth. Seven out of the nine compounds were phenolic, which significantly reduced radicle growth in a concentration-dependent manner. The other two were aliphatic compounds that showed a moderate inhibition effect at three concentrations. Concentration of these compounds in soil samples was determined by HPLC. Furthermore, the autotoxic compounds were also found in the top soil of the commercially cultivated Rehmannia fields. It appears that a close link exists between the autotoxic effects on the seedlings and the compounds extracted from fibrous roots of Rehmannia

    14-3-3epsilon contributes to tumour suppression in laryngeal carcinoma by affecting apoptosis and invasion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>14-3-3epsilon regulates a wide range of biological processes, including cell cycle control, proliferation, and apoptosis, and plays a significant role in neurogenesis and the formation of malignant tumours. However, the exact function and regulatory mechanism of 14-3-3epsilon in carcinogenesis have not been elucidated.</p> <p>Methods</p> <p>The expression of <it>14-3-3epsilon </it>was assessed by RT-PCR and western blotting. The invasiveness and viability of Hep-2 cells were determined by the transwell migration assay and MTT assay, respectively. Cell cycle and apoptosis of Hep-2 cells were detected by flow cytometry.</p> <p>Results</p> <p>The mRNA and protein expression of <it>14-3-3epsilon </it>in larynx squamous cell carcinoma (LSCC) tissues were significantly lower than those in clear surgical margin tissues. Statistical analysis showed that the 14-3-3epsilon protein level in metastatic lymph nodes was lower than that in paired tumour tissues. In addition, the protein level of 14-3-3epsilon in stage III or IV tumours was significantly lower than that in stage I or II tumours. Compared with control Hep-2 cells, the percentages of viable cells in the 14-3-3epsilon-GFP and negative control GFP groups were 36.68 ± 14.09% and 71.68 ± 12.10%, respectively. The proportions of S phase were 22.47 ± 3.36%, 28.17 ± 3.97% and 46.15 ± 6.82%, and the apoptotic sub-G1 populations were 1.23 ± 1.02%, 2.92 ± 1.59% and 13.72 ± 3.89% in the control, negative control GFP and 14-3-3epsilon-GFP groups, respectively. The percentages of the apoptotic cells were 0.84 ± 0.25%, 1.08 ± 0.24% and 2.93 ± 0.13% in the control, negative control GFP and 14-3-3epsilon-GFP groups, respectively. The numbers of cells that penetrated the filter membrane in the control, negative control GFP and 14-3-3epsilon-GFP groups were 20.65 ± 1.94, 17.63 ± 1.04 and 9.1 ± 0.24, respectively, indicating significant differences among the different groups.</p> <p>Conclusions</p> <p>Decreased expression of <it>14-3-3epsilon </it>in LSCC tissues contributes to the initiation and progression of LSCC. <it>14-3-3epsilon </it>can promote apoptosis and inhibit the invasiveness of LSCC.</p

    SnO2Nanowire Arrays and Electrical Properties Synthesized by Fast Heating a Mixture of SnO2and CNTs Waste Soot

    Get PDF
    SnO2nanowire arrays were synthesized by fast heating a mixture of SnO2and the carbon nanotubes waste soot by high-frequency induction heating. The resultant SnO2nanowires possess diameters from 50 to 100 nm and lengths up to tens of mircrometers. The field-effect transistors based on single SnO2nanowire exhibit that as-synthesized nanowires have better transistor performance in terms of transconductance and on/off ratio. This work demonstrates a simple technique to the growth of nanomaterials for application in future nanoelectronic devices

    Wnt/β-Catenin Signaling Induces the Aging of Mesenchymal Stem Cells through the DNA Damage Response and the p53/p21 Pathway

    Get PDF
    Recent studies have demonstrated the importance of cellular extrinsic factors in the aging of adult stem cells. However, the effects of an aged cell–extrinsic environment on mesenchymal stem cell (MSC) aging and the factors involved remain unclear. In the current study, we examine the effects of old rat serum (ORS) on the aging of MSCs, and explore the effects and mechanisms of Wnt/β-catenin signaling on MSC aging induced by ORS treatment. Senescence-associated changes in the cells are examined with SA-β-galactosidase staining and ROS staining. The proliferation ability is detected by MTT assay. The surviving and apoptotic cells are determined using AO/EB staining. The results suggest that ORS promotes MSC senescence and reduces the proliferation and survival of cells. The immunofluorescence staining shows that the expression of β-catenin increases in MSCs of old rats. To identify the effects of Wnt/β-catenin signaling on MSC aging induced with ORS, the expression of β-catenin, GSK-3β, and c-myc are detected. The results show that the Wnt/β-catenin signaling in the cells is activated after ORS treatment. Then we examine the aging, proliferation, and survival of MSCs after modulating Wnt/β-catenin signaling. The results indicate that the senescence and dysfunction of MSCs in the medium containing ORS is reversed by the Wnt/β-catenin signaling inhibitor DKK1 or by β-catenin siRNA. Moreover, the expression of γ-H2A.X, a molecular marker of DNA damage response, p16INK4a, p53, and p21 is increased in senescent MSCs induced with ORS, and is also reversed by DKK1 or by β-catenin siRNA. In summary, our study indicates the Wnt/β-catenin signaling may play a critical role in MSC aging induced by the serum of aged animals and suggests that the DNA damage response and p53/p21 pathway may be the main mediators of MSC aging induced by excessive activation of Wnt/β-catenin signaling

    Genome-Wide Association Study Identifies ALDH7A1 as a Novel Susceptibility Gene for Osteoporosis

    Get PDF
    Osteoporosis is a major public health problem. It is mainly characterized by low bone mineral density (BMD) and/or low-trauma osteoporotic fractures (OF), both of which have strong genetic determination. The specific genes influencing these phenotypic traits, however, are largely unknown. Using the Affymetrix 500K array set, we performed a case-control genome-wide association study (GWAS) in 700 elderly Chinese Han subjects (350 with hip OF and 350 healthy matched controls). A follow-up replication study was conducted to validate our major GWAS findings in an independent Chinese sample containing 390 cases with hip OF and 516 controls. We found that a SNP, rs13182402 within the ALDH7A1 gene on chromosome 5q31, was strongly associated with OF with evidence combined GWAS and replication studies (P = 2.08×10−9, odds ratio = 2.25). In order to explore the target risk factors and potential mechanism underlying hip OF risk, we further examined this candidate SNP's relevance to hip BMD both in Chinese and Caucasian populations involving 9,962 additional subjects. This SNP was confirmed as consistently associated with hip BMD even across ethnic boundaries, in both Chinese and Caucasians (combined P = 6.39×10−6), further attesting to its potential effect on osteoporosis. ALDH7A1 degrades and detoxifies acetaldehyde, which inhibits osteoblast proliferation and results in decreased bone formation. Our findings may provide new insights into the pathogenesis of osteoporosis

    NMDA and Dopamine Converge on the NMDA-Receptor to Induce ERK Activation and Synaptic Depression in Mature Hippocampus

    Get PDF
    The formation of enduring internal representation of sensory information demands, in many cases, convergence in time and space of two different stimuli. The first conveys the sensory input, mediated via fast neurotransmission. The second conveys the meaning of the input, hypothesized to be mediated via slow neurotransmission. We tested the biochemical conditions and feasibility for fast (NMDA) and slow (dopamine) neurotransmission to converge on the Mitogen Activated Protein Kinase signaling pathways, crucial in several forms of synaptic plasticity, and recorded its effects upon synaptic transmission. We detected differing kinetics of ERK2 activation and synaptic strength changes in the CA1 for low and high doses of neurotransmitters in hippocampal slices. Moreover, when weak fast and slow inputs are given together, they converge on ERK2, but not on p38 or JNK, and induce strong short-term synaptic depression. Surprisingly, pharmacological analysis revealed that a probable site of such convergence is the NMDA receptor itself, suggesting it serves as a detector and integrator of fast and slow neurotransmission in the mature mammalian brain, as revealed by ERK2 activation and synaptic function

    Anesthetic Propofol Attenuates the Isoflurane-Induced Caspase-3 Activation and Aβ Oligomerization

    Get PDF
    Accumulation and deposition of β-amyloid protein (Aβ) are the hallmark features of Alzheimer's disease. The inhalation anesthetic isoflurane has been shown to induce caspase activation and increase Aβ accumulation. In addition, recent studies suggest that isoflurane may directly promote the formation of cytotoxic soluble Aβ oligomers, which are thought to be the key pathological species in AD. In contrast, propofol, the most commonly used intravenous anesthetic, has been reported to have neuroprotective effects. We therefore set out to compare the effects of isoflurane and propofol alone and in combination on caspase-3 activation and Aβ oligomerization in vitro and in vivo. Naïve and stably-transfected H4 human neuroglioma cells that express human amyloid precursor protein, the precursor for Aβ; neonatal mice; and conditioned cell culture media containing secreted human Aβ40 or Aβ42 were treated with isoflurane and/or propofol. Here we show for the first time that propofol can attenuate isoflurane-induced caspase-3 activation in cultured cells and in the brain tissues of neonatal mice. Furthermore, propofol-mediated caspase inhibition occurred when there were elevated levels of Aβ. Finally, isoflurane alone induces Aβ42, but not Aβ40, oligomerization, and propofol can inhibit the isoflurane-mediated oligomerization of Aβ42. These data suggest that propofol may mitigate the caspase-3 activation by attenuating the isoflurane-induced Aβ42 oligomerization. Our findings provide novel insights into the possible mechanisms of isoflurane-induced neurotoxicity that may aid in the development of strategies to minimize potential adverse effects associated with the administration of anesthetics to patients

    Imaging in assessing hepatic and peritoneal metastases of gastric cancer: a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatic and peritoneal metastases of gastric cancer are operation contraindications. Systematic review to provide an overview of imaging in predicting the status of liver and peritoneum pre-therapeuticly is essential.</p> <p>Methods</p> <p>A systematic review of relevant literatures was performed in Pubmed/Medline, Embase, The Cochrane Library and the China Biological Medicine Databases. QUADAS was used for assessing the methodological quality of included studies and the bivariate model was used for this meta-analysis.</p> <p>Results</p> <p>Totally 33 studies were included (8 US studies, 5 EUS studies, 22 CT studies, 2 MRI studies and 5 18F-FDG PET studies) and the methodological quality of included studies was moderate. The result of meta-analysis showed that CT is the most sensitive imaging method [0.74 (95% CI: 0.59-0.85)] with a high rate of specificity [0.99 (95% CI: 0.97-1.00)] in detecting hepatic metastasis, and EUS is the most sensitive imaging modality [0.34 (95% CI: 0.10-0.69) ] with a specificity of 0.96 (95% CI: 0.87-0.99) in detecting peritoneal metastasis. Only two eligible MRI studies were identified and the data were not combined. The two studies found that MRI had both high sensitivity and specificity in detecting liver metastasis.</p> <p>Conclusion</p> <p>US, EUS, CT and <sup>18</sup>F-FDG PET did not obtain consistently high sensitivity and specificity in assessing liver and peritoneal metastases of gastric cancer. The value of laparoscopy, PET/CT, DW-MRI, and new PET tracers such as <sup>18</sup>F-FLT needs to be studied in future.</p
    corecore