113 research outputs found

    Metal-insulator transition in vanadium dioxide nanobeams: probing sub-domain properties of strongly correlated materials

    Full text link
    Many strongly correlated electronic materials, including high-temperature superconductors, colossal magnetoresistance and metal-insulator-transition (MIT) materials, are inhomogeneous on a microscopic scale as a result of domain structure or compositional variations. An important potential advantage of nanoscale samples is that they exhibit the homogeneous properties, which can differ greatly from those of the bulk. We demonstrate this principle using vanadium dioxide, which has domain structure associated with its dramatic MIT at 68 degrees C. Our studies of single-domain vanadium dioxide nanobeams reveal new aspects of this famous MIT, including supercooling of the metallic phase by 50 degrees C; an activation energy in the insulating phase consistent with the optical gap; and a connection between the transition and the equilibrium carrier density in the insulating phase. Our devices also provide a nanomechanical method of determining the transition temperature, enable measurements on individual metal-insulator interphase walls, and allow general investigations of a phase transition in quasi-one-dimensional geometry.Comment: 9 pages, 3 figures, original submitted in June 200

    New Experimental Limits on Macroscopic Forces Below 100 Microns

    Full text link
    Results of an experimental search for new macroscopic forces with Yukawa range between 5 and 500 microns are presented. The experiment uses 1 kHz mechanical oscillators as test masses with a stiff conducting shield between them to suppress backgrounds. No signal is observed above the instrumental thermal noise after 22 hours of integration time. These results provide the strongest limits to date between 10 and 100 microns, improve on previous limits by as much as three orders of magnitude, and rule out half of the remaining parameter space for predictions of string-inspired models with low-energy supersymmetry breaking. New forces of four times gravitational strength or greater are excluded at the 95% confidence level for interaction ranges between 200 and 500 microns.Comment: 25 Pages, 7 Figures: Minor Correction

    Ultrafast changes in lattice symmetry probed by coherent phonons

    Full text link
    The electronic and structural properties of a material are strongly determined by its symmetry. Changing the symmetry via a photoinduced phase transition offers new ways to manipulate material properties on ultrafast timescales. However, in order to identify when and how fast these phase transitions occur, methods that can probe the symmetry change in the time domain are required. We show that a time-dependent change in the coherent phonon spectrum can probe a change in symmetry of the lattice potential, thus providing an all-optical probe of structural transitions. We examine the photoinduced structural phase transition in VO2 and show that, above the phase transition threshold, photoexcitation completely changes the lattice potential on an ultrafast timescale. The loss of the equilibrium-phase phonon modes occurs promptly, indicating a non-thermal pathway for the photoinduced phase transition, where a strong perturbation to the lattice potential changes its symmetry before ionic rearrangement has occurred.Comment: 14 pages 4 figure

    Improving the psychological evaluation of exercise referral: psychometric properties of the Exercise Referral Quality of Life Scale

    Get PDF
    There is a growing need to assess the psychological outcomes of exercise referral and the National Institute of Health and Care Excellence has called for the routine assessment of life-quality. However, a quality of life scale specific to the requirements of exercise referral is currently unavailable. Therefore, the aim of this study was to produce a quality of life measure for this purpose. The Exercise Referral Quality of Life Scale is a 22-item measure comprising three domains: mental and physical health, injury pain and illness and physical activity facilitators. Exploratory factor analysis determined the initial factor structure and was subsequently confirmed by confirmatory factor analysis. Additional scale properties were also assessed. The scale contributes to the global need for improved consistent psychological outcome assessment of exercise referral

    A review of the systematic biology of fossil and living bony-tongue fishes, Osteoglossomorpha (Actinopterygii: Teleostei)

    Get PDF
    The bony-tongue fishes, Osteoglossomorpha, have been the focus of a great deal of morphological, systematic, and evolutionary study, due in part to their basal position among extant teleostean fishes. This group includes the mooneyes (Hiodontidae), knifefishes (Notopteridae), the abu (Gymnarchidae), elephantfishes (Mormyridae), arawanas and pirarucu (Osteoglossidae), and the African butterfly fish (Pantodontidae). This morphologically heterogeneous group also has a long and diverse fossil record, including taxa from all continents and both freshwater and marine deposits. The phylogenetic relationships among most extant osteoglossomorph families are widely agreed upon. However, there is still much to discover about the systematic biology of these fishes, particularly with regard to the phylogenetic affinities of several fossil taxa, within Mormyridae, and the position of Pantodon. In this paper we review the state of knowledge for osteoglossomorph fishes. We first provide an overview of the diversity of Osteoglossomorpha, and then discuss studies of the phylogeny of Osteoglossomorpha from both morphological and molecular perspectives, as well as biogeographic analyses of the group. Finally, we offer our perspectives on future needs for research on the systematic biology of Osteoglossomorpha

    Mindful breath awareness meditation facilitates efficiency gains in brain networks: A steady-state visually evoked potentials study

    Get PDF
    The beneficial effects of mindfulness-based therapeutic interventions have stimulated a rapidly growing body of scientific research into underlying psychological processes. Resulting evidence indicates that engaging with mindfulness meditation is associated with increased performance on a range of cognitive tasks. However, the mechanisms promoting these improvements require further investigation. We studied changes in behavioural performance of 34 participants during a multiple object tracking (MOT) task that taps core cognitive processes, namely sustained selective visual attention and spatial working memory. Concurrently, we recorded the steady-state visually evoked potential (SSVEP), an EEG signal elicited by the continuously flickering moving objects, and indicator of attentional engagement. Participants were tested before and after practicing eight weeks of mindful breath awareness meditation or progressive muscle relaxation as active control condition. The meditation group improved their MOT-performance and exhibited a reduction of SSVEP amplitudes, whereas no such changes were observed in the relaxation group. Neither group changed in self-reported positive affect and mindfulness, while a marginal increase in negative affect was observed in the mindfulness group. This novel way of combining MOT and SSVEP provides the important insight that mindful breath awareness meditation may lead to refinements of attention networks, enabling more efficient use of attentional resources

    Advanced backcross QTL mapping of resistance to Fusarium head blight and plant morphological traits in a Triticum macha × T. aestivum population

    Get PDF
    While many reports on genetic analysis of Fusarium head blight (FHB) resistance in bread wheat have been published during the past decade, only limited information is available on FHB resistance derived from wheat relatives. In this contribution, we report on the genetic analysis of FHB resistance derived from Triticum macha (Georgian spelt wheat). As the origin of T. macha is in the Caucasian region, it is supposed that its FHB resistance differs from other well-investigated resistance sources. To introduce valuable alleles from the landrace T. macha into a modern genetic background, we adopted an advanced backcross QTL mapping scheme. A backcross-derived recombinant-inbred line population of 321 BC2F3 lines was developed from a cross of T. macha with the Austrian winter wheat cultivar Furore. The population was evaluated for Fusarium resistance in seven field experiments during four seasons using artificial inoculations. A total of 300 lines of the population were genetically fingerprinted using SSR and AFLP markers. The resulting linkage map covered 33 linkage groups with 560 markers. Five novel FHB-resistance QTL, all descending from T. macha, were found on four chromosomes (2A, 2B, 5A, 5B). Several QTL for morphological and developmental traits were mapped in the same population, which partly overlapped with FHB-resistance QTL. Only the 2BL FHB-resistance QTL co-located with a plant height QTL. The largest-effect FHB-resistance QTL in this population mapped at the spelt-type locus on chromosome 5A and was associated with the wild-type allele q, but it is unclear whether q has a pleiotropic effect on FHB resistance or is closely linked to a nearby resistance QTL

    Activation and modulation of antiviral and apoptotic genes in pigs infected with classical swine fever viruses of high, moderate or low virulence

    Get PDF
    The immune response to CSFV and the strategies of this virus to evade and suppress the pigs’ immune system are still poorly understood. Therefore, we investigated the transcriptional response in the tonsils, median retropharyngeal lymph node (MRLN), and spleen of pigs infected with CSFV strains of similar origin with high, moderate, and low virulence. Using a porcine spleen/intestinal cDNA microarray, expression levels in RNA pools prepared from infected tissue at 3 dpi (three pigs per virus strain) were compared to levels in pools prepared from uninfected homologue tissues (nine pigs). A total of 44 genes were found to be differentially expressed. The genes were functionally clustered in six groups: innate and adaptive immune response, interferon-regulated genes, apoptosis, ubiquitin-mediated proteolysis, oxidative phosphorylation and cytoskeleton. Significant up-regulation of three IFN-γ-induced genes in the MRLNs of pigs infected with the low virulence strain was the only clear qualitative difference in gene expression observed between the strains with high, moderate and low virulence. Real-time PCR analysis of four response genes in all individual samples largely confirmed the microarray data at 3 dpi. Additional PCR analysis of infected tonsil, MRLN, and spleen samples collected at 7 and 10 dpi indicated that the strong induction of expression of the antiviral response genes chemokine CXCL10 and 2′–5′ oligoadenylate synthetase 2, and of the TNF-related apoptosis-inducing ligand (TRAIL) gene at 3 dpi, decreased to lower levels at 7 and 10 dpi. For the highly and moderately virulent strains, this decrease in antiviral and apoptotic gene expression coincided with higher levels of virus in these immune tissues
    corecore