2 research outputs found

    Using Social Media to Promote STEM Education: Matching College Students with Role Models

    Full text link
    STEM (Science, Technology, Engineering, and Mathematics) fields have become increasingly central to U.S. economic competitiveness and growth. The shortage in the STEM workforce has brought promoting STEM education upfront. The rapid growth of social media usage provides a unique opportunity to predict users' real-life identities and interests from online texts and photos. In this paper, we propose an innovative approach by leveraging social media to promote STEM education: matching Twitter college student users with diverse LinkedIn STEM professionals using a ranking algorithm based on the similarities of their demographics and interests. We share the belief that increasing STEM presence in the form of introducing career role models who share similar interests and demographics will inspire students to develop interests in STEM related fields and emulate their models. Our evaluation on 2,000 real college students demonstrated the accuracy of our ranking algorithm. We also design a novel implementation that recommends matched role models to the students.Comment: 16 pages, 8 figures, accepted by ECML/PKDD 2016, Industrial Trac

    Complex systems and the technology of variability analysis

    Get PDF
    Characteristic patterns of variation over time, namely rhythms, represent a defining feature of complex systems, one that is synonymous with life. Despite the intrinsic dynamic, interdependent and nonlinear relationships of their parts, complex biological systems exhibit robust systemic stability. Applied to critical care, it is the systemic properties of the host response to a physiological insult that manifest as health or illness and determine outcome in our patients. Variability analysis provides a novel technology with which to evaluate the overall properties of a complex system. This review highlights the means by which we scientifically measure variation, including analyses of overall variation (time domain analysis, frequency distribution, spectral power), frequency contribution (spectral analysis), scale invariant (fractal) behaviour (detrended fluctuation and power law analysis) and regularity (approximate and multiscale entropy). Each technique is presented with a definition, interpretation, clinical application, advantages, limitations and summary of its calculation. The ubiquitous association between altered variability and illness is highlighted, followed by an analysis of how variability analysis may significantly improve prognostication of severity of illness and guide therapeutic intervention in critically ill patients
    corecore