1,893 research outputs found
Dynamics of a qubit while simultaneously monitoring its relaxation and dephasing
Decoherence originates from the leakage of quantum information into external
degrees of freedom. For a qubit the two main decoherence channels are
relaxation and dephasing. Here, we report an experiment on a superconducting
qubit where we retrieve part of the lost information in both of these channels.
We demonstrate that raw averaging the corresponding measurement records
provides a full quantum tomography of the qubit state where all three
components of the effective spin-1/2 are simultaneously measured. From single
realizations of the experiment, it is possible to infer the quantum
trajectories followed by the qubit state conditioned on relaxation and/or
dephasing channels. The incompatibility between these quantum measurements of
the qubit leads to observable consequences in the statistics of quantum states.
The high level of controllability of superconducting circuits enables us to
explore many regimes from the Zeno effect to underdamped Rabi oscillations
depending on the relative strengths of driving, dephasing and relaxation.Comment: Supplemental videos can be found at
http://physinfo.fr/publications/Ficheux1710.html and supplemental information
can be found as an ancillary file on arxi
Nonlinear magneto-optical rotation in optically thick media
Nonlinear magneto-optical rotation is a sensitive technique for measuring
magnetic fields. Here, the shot-noise-limited magnetometric sensitivity is
analyzed for the case of optically-thick media and high light power, which has
been the subject of recent experimental and theoretical investigations.Comment: 7 pages, 4 figure
On the central quadric ansatz: integrable models and Painleve reductions
It was observed by Tod and later by Dunajski and Tod that the Boyer-Finley
(BF) and the dispersionless Kadomtsev-Petviashvili (dKP) equations possess
solutions whose level surfaces are central quadrics in the space of independent
variables (the so-called central quadric ansatz). It was demonstrated that
generic solutions of this type are described by Painleve equations PIII and
PII, respectively. The aim of our paper is threefold:
-- Based on the method of hydrodynamic reductions, we classify integrable
models possessing the central quadric ansatz. This leads to the five canonical
forms (including BF and dKP).
-- Applying the central quadric ansatz to each of the five canonical forms,
we obtain all Painleve equations PI - PVI, with PVI corresponding to the
generic case of our classification.
-- We argue that solutions coming from the central quadric ansatz constitute
a subclass of two-phase solutions provided by the method of hydrodynamic
reductions.Comment: 12 page
Using Spontaneous Emission of a Qubit as a Resource for Feedback Control
Persistent control of a transmon qubit is performed by a feedback protocol
based on continuous heterodyne measurement of its fluorescence. By driving the
qubit and cavity with microwave signals whose amplitudes depend linearly on the
instantaneous values of the quadratures of the measured fluorescence field, we
show that it is possible to stabilize permanently the qubit in any targeted
state. Using a Josephson mixer as a phase-preserving amplifier, it was possible
to reach a total measurement efficiency =35%, leading to a maximum of 59%
of excitation and 44% of coherence for the stabilized states. The experiment
demonstrates multiple-input multiple-output analog Markovian feedback in the
quantum regime.Comment: Supplementary material can be found as an ancillary objec
Targeting BAFF and APRIL in systemic lupus erythematosus and other antibody-associated diseases.
The B cell-stimulating molecules, BAFF (B cell activating factor) and APRIL (a proliferation-inducing ligand), are critical factors in the maintenance of the B cell pool and humoral immunity. In addition, BAFF and APRIL are involved in the pathogenesis of a number of human autoimmune diseases, with elevated levels of these cytokines detected in the sera of patients with systemic lupus erythematosus (SLE), IgA nephropathy, Sjögren's syndrome, and rheumatoid arthritis. As such, both molecules are rational targets for new therapies in B cell-driven autoimmune diseases, and several inhibitors of BAFF or BAFF and APRIL together have been investigated in clinical trials. These include the BAFF/APRIL dual inhibitor, atacicept, and the BAFF inhibitor, belimumab, which is approved as an add-on therapy for patients with active SLE. Post hoc analyses of these trials indicate that baseline serum levels of BAFF and BAFF/APRIL correlate with treatment response to belimumab and atacicept, respectively, suggesting a role for the two molecules as predictive biomarkers. It will, however, be important to refine future testing to identify active forms of BAFF and APRIL in the circulation, as well as to distinguish between homotrimer and heteromer configurations. In this review, we discuss the rationale for dual BAFF/APRIL inhibition versus single BAFF inhibition in autoimmune disease, by focusing on the similarities and differences between the physiological and pathogenic roles of the two molecules. A summary of the preclinical and clinical data currently available is also presented
Widely tunable, non-degenerate three-wave mixing microwave device operating near the quantum limit
We present the first experimental realization of a widely frequency tunable,
non-degenerate three-wave mixing device for quantum signals at GHz frequency.
It is based on a new superconducting building-block consisting of a ring of
four Josephson junctions shunted by a cross of four linear inductances. The
phase configuration of the ring remains unique over a wide range of magnetic
fluxes threading the loop. It is thus possible to vary the inductance of the
ring with flux while retaining a strong, dissipation-free, and noiseless
non-linearity. The device has been operated in amplifier mode and its noise
performance has been evaluated by using the noise spectrum emitted by a voltage
biased tunnel junction at finite frequency as a test signal. The unprecedented
accuracy with which the crossover between zero-point-fluctuations and shot
noise has been measured provides an upper-bound for the noise and dissipation
intrinsic to the device.Comment: Accepted for Physical Review Letters. Supplementary material can be
found in the source packag
The Mass Distributions of Starless and Protostellar Cores in Gould Belt Clouds
Using data from the SCUBA Legacy Catalogue (850 um) and Spitzer Space
Telescope (3.6 - 70 um), we explore dense cores in the Ophiuchus, Taurus,
Perseus, Serpens, and Orion molecular clouds. We develop a new method to
discriminate submillimeter cores found by SCUBA as starless or protostellar,
using point source photometry from Spitzer wide field surveys. First, we
identify infrared sources with red colors associated with embedded young
stellar objects (YSOs). Second, we compare the positions of these
YSO-candidates to our submillimeter cores. With these identifications, we
construct new, self-consistent starless and protostellar core mass functions
(CMFs) for the five clouds. We find best fit slopes to the high-mass end of the
CMFs of -1.26 +/- 0.20, -1.22 +/- 0.06, -0.95 +/- 0.20, and -1.67 +/- 0.72 for
Ophiuchus, Taurus, Perseus, and Orion, respectively. Broadly, these slopes are
each consistent with the -1.35 power-law slope of the Salpeter IMF at higher
masses, but suggest some differences. We examine a variety of trends between
these CMF shapes and their parent cloud properties, potentially finding a
correlation between the high-mass slope and core temperature. We also find a
trend between core mass and effective size, but we are very limited by
sensitivity. We make similar comparisons between core mass and size with visual
extinction (for A_V >= 3) and find no obvious trends. We also predict the
numbers and mass distributions of cores that future surveys with SCUBA-2 may
detect in each of these clouds.Comment: 56 pages, 18 figures, fixed typo in Eq 1, results in paper remain
unchange
Contact resistance in graphene-based devices
We report a systematic study of the contact resistance present at the
interface between a metal (Ti) and graphene layers of different, known
thickness. By comparing devices fabricated on 11 graphene flakes we demonstrate
that the contact resistance is quantitatively the same for single-, bi-, and
tri-layer graphene (), and is in all cases
independent of gate voltage and temperature. We argue that the observed
behavior is due to charge transfer from the metal, causing the Fermi level in
the graphene region under the contacts to shift far away from the charge
neutrality point
A self-consistent theory for graphene transport
We demonstrate theoretically that most of the observed transport properties
of graphene sheets at zero magnetic field can be explained by scattering from
charged impurities. We find that, contrary to common perception, these
properties are not universal but depend on the concentration of charged
impurities . For dirty samples (), the value of the minimum
conductivity at low carrier density is indeed in agreement with early
experiments, with weak dependence on impurity concentration. For cleaner
samples, we predict that the minimum conductivity depends strongly on , increasing to for . A clear strategy to improve graphene mobility is to eliminate
charged impurities or use a substrate with a larger dielectric constant.Comment: To be published in Proc. Natl. Acad. Sci. US
Entanglement and squeezing in a two-mode system: theory and experiment
We report on the generation of non separable beams produced via the
interaction of a linearly polarized beam with a cloud of cold cesium atoms
placed in an optical cavity. We convert the squeezing of the two linear
polarization modes into quadrature entanglement and show how to find out the
best entanglement generated in a two-mode system using the inseparability
criterion for continuous variable [Duan et al., Phys. Rev. Lett. 84, 2722
(2000)]. We verify this method experimentally with a direct measurement of the
inseparability using two homodyne detections. We then map this entanglement
into a polarization basis and achieve polarization entanglement.Comment: submitted to J. Opt. B for a Special Issue on Foundations of Quantum
Optic
- …