14 research outputs found
Scope for Credit Risk Diversification
This paper considers a simple model of credit risk and derives the limit distribution of losses under different assumptions regarding the structure of systematic risk and the nature of exposure or firm heterogeneity. We derive fat-tailed correlated loss distributions arising from Gaussian risk factors and explore the potential for risk diversification. Where possible the results are generalised to non-Gaussian distributions. The theoretical results indicate that if the firm parameters are heterogeneous but come from a common distribution, for sufficiently large portfolios there is no scope for further risk reduction through active portfolio management. However, if the firm parameters come from different distributions, then further risk reduction is possible by changing the portfolio weights. In either case, neglecting parameter heterogeneity can lead to underestimation of expected losses. But, once expected losses are controlled for, neglecting parameter heterogeneity can lead to overestimation of risk, whether measured by unexpected loss or value-at-risk
Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States
Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naïve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks
The United States COVID-19 Forecast Hub dataset
Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages
A framework to measure integrated risk
A framework underlying various models that measure the credit risk of a portfolio is extended in this paper to allow the integration of credit risk with a range of market risks using Monte Carlo simulation. A structural model is proposed that allows interest rates to be stochastic and provides closed-form expressions for the market value of a firm's equity and its probability of default. This model is embedded within the integrated framework and the general approach illustrated by measuring the risk of a foreign exchange forward when there is a significant probability of default by the counterparty. For this example moving from a market risk calculation to an integrated risk calculation reduces the expected future value of the instrument by an amount that could not be calculated using the common pre-settlement exposure technique for estimating the credit risk of a derivative.Risk measurement, Market risk, Credit risk, Pre-settlement risk, Integrated risk, Structural credit models, Economic capital, Foreign exchange forward,