477 research outputs found
Alendronate and atrial fibrillation: a meta-analysis of randomized placebo-controlled clinical trials
Bone and mineral researc
Percentage of Patients with Preventable Adverse Drug Reactions and Preventability of Adverse Drug Reactions – A Meta-Analysis
BACKGROUND: Numerous observational studies suggest that preventable adverse drug reactions are a significant burden in healthcare, but no meta-analysis using a standardised definition for adverse drug reactions exists. The aim of the study was to estimate the percentage of patients with preventable adverse drug reactions and the preventability of adverse drug reactions in adult outpatients and inpatients. METHODS: Studies were identified through searching Cochrane, CINAHL, EMBASE, IPA, Medline, PsycINFO and Web of Science in September 2010, and by hand searching the reference lists of identified papers. Original peer-reviewed research articles in English that defined adverse drug reactions according to WHO's or similar definition and assessed preventability were included. Disease or treatment specific studies were excluded. Meta-analysis on the percentage of patients with preventable adverse drug reactions and the preventability of adverse drug reactions was conducted. RESULTS: Data were analysed from 16 original studies on outpatients with 48797 emergency visits or hospital admissions and from 8 studies involving 24128 inpatients. No studies in primary care were identified. Among adult outpatients, 2.0% (95% confidence interval (CI): 1.2-3.2%) had preventable adverse drug reactions and 52% (95% CI: 42-62%) of adverse drug reactions were preventable. Among inpatients, 1.6% (95% CI: 0.1-51%) had preventable adverse drug reactions and 45% (95% CI: 33-58%) of adverse drug reactions were preventable. CONCLUSIONS: This meta-analysis corroborates that preventable adverse drug reactions are a significant burden to healthcare among adult outpatients. Among both outpatients and inpatients, approximately half of adverse drug reactions are preventable, demonstrating that further evidence on prevention strategies is required. The percentage of patients with preventable adverse drug reactions among inpatients and in primary care is largely unknown and should be investigated in future research
Apprenticeship, Vocational Training and Early Labor Market Outcomes - In East and West Germany
We study the returns to apprenticeship and vocational training for three early labor market outcomes all measured at age 25 for East and West German youths: non-employment (i.e., unemployment or out of the labor force), permanent fulltime employment, and wages. We find strong positive effects of apprenticeship and vocational training. There are no significant differences for different types of vocational training, minor differences between East and West Germany and males and females, and no significant changes in the returns over time. Instrumental variable estimations confirm the regression results. The positive returns hold up even in poor labor market situations
Sensory Integration Regulating Male Courtship Behavior in Drosophila
The courtship behavior of Drosophila melanogaster serves as an excellent model system to study how complex innate behaviors are controlled by the nervous system. To understand how the underlying neural network controls this behavior, it is not sufficient to unravel its architecture, but also crucial to decipher its logic. By systematic analysis of how variations in sensory inputs alter the courtship behavior of a naïve male in the single-choice courtship paradigm, we derive a model describing the logic of the network that integrates the various sensory stimuli and elicits this complex innate behavior. This approach and the model derived from it distinguish (i) between initiation and maintenance of courtship, (ii) between courtship in daylight and in the dark, where the male uses a scanning strategy to retrieve the decamping female, and (iii) between courtship towards receptive virgin females and mature males. The last distinction demonstrates that sexual orientation of the courting male, in the absence of discriminatory visual cues, depends on the integration of gustatory and behavioral feedback inputs, but not on olfactory signals from the courted animal. The model will complement studies on the connectivity and intrinsic properties of the neurons forming the circuitry that regulates male courtship behavior
Dark Energy Survey Year 1 results: validation of weak lensing cluster member contamination estimates from P(z) decomposition
Weak lensing source galaxy catalogues used in estimating the masses of galaxy clusters can be heavily contaminated by cluster members, prohibiting accurate mass calibration. In this study, we test the performance of an estimator for the extent of cluster member contamination based on decomposing the photometric redshift P(z) of source galaxies into contaminating and background components. We perform a full scale mock analysis on a simulated sky survey approximately mirroring the observational properties of the Dark Energy Survey Year One observations (DES Y1), and find excellent agreement between the true number profile of contaminating cluster member galaxies in the simulation and the estimated one. We further apply the method to estimate the cluster member contamination for the DES Y1 redMaPPer cluster mass calibration analysis, and compare the results to an alternative approach based on the angular correlation of weak lensing source galaxies. We find indications that the correlation based estimates are biased by the selection of the weak lensing sources in the cluster vicinity, which does not strongly impact the P(z) decomposition method. Collectively, these benchmarks demonstrate the strength of the P(z) decomposition method in alleviating membership contamination and enabling highly accurate cluster weak lensing studies without broad exclusion of source galaxies, thereby improving the total constraining power of cluster mass calibration via weak lensing
Dark Energy Survey Year 1 results: validation of weak lensing cluster member contamination estimates from P(z) decomposition
Weak lensing source galaxy catalogues used in estimating the masses of galaxy clusters can be heavily contaminated by cluster members, prohibiting accurate mass calibration. In this study, we test the performance of an estimator for the extent of cluster member contamination based on decomposing the photometric redshift P(z) of source galaxies into contaminating and background components. We perform a full scale mock analysis on a simulated sky survey approximately mirroring the observational properties of the Dark Energy Survey Year One observations (DES Y1), and find excellent agreement between the true number profile of contaminating cluster member galaxies in the simulation and the estimated one. We further apply the method to estimate the cluster member contamination for the DES Y1 redMaPPer cluster mass calibration analysis, and compare the results to an alternative approach based on the angular correlation of weak lensing source galaxies. We find indications that the correlation based estimates are biased by the selection of the weak lensing sources in the cluster vicinity, which does not strongly impact the P(z) decomposition method. Collectively, these benchmarks demonstrate the strength of the P(z) decomposition method in alleviating membership contamination and enabling highly accurate cluster weak lensing studies without broad exclusion of source galaxies, thereby improving the total constraining power of cluster mass calibration via weak lensing
Thriving under Stress: Selective Translation of HIV-1 Structural Protein mRNA during Vpr-Mediated Impairment of eIF4E Translation Activity
Translation is a regulated process and is pivotal to proper cell growth and homeostasis. All retroviruses rely on the host translational machinery for viral protein synthesis and thus may be susceptible to its perturbation in response to stress, co-infection, and/or cell cycle arrest. HIV-1 infection arrests the cell cycle in the G2/M phase, potentially disrupting the regulation of host cell translation. In this study, we present evidence that HIV-1 infection downregulates translation in lymphocytes, attributable to the cell cycle arrest induced by the HIV-1 accessory protein Vpr. The molecular basis of the translation suppression is reduced accumulation of the active form of the translation initiation factor 4E (eIF4E). However, synthesis of viral structural proteins is sustained despite the general suppression of protein production. HIV-1 mRNA translation is sustained due to the distinct composition of the HIV-1 ribonucleoprotein complexes. RNA-coimmunoprecipitation assays determined that the HIV-1 unspliced and singly spliced transcripts are predominantly associated with nuclear cap binding protein 80 (CBP80) in contrast to completely-spliced viral and cellular mRNAs that are associated with eIF4E. The active translation of the nuclear cap binding complex (CBC)-bound viral mRNAs is demonstrated by ribosomal RNA profile analyses. Thus, our findings have uncovered that the maintenance of CBC association is a novel mechanism used by HIV-1 to bypass downregulation of eIF4E activity and sustain viral protein synthesis. We speculate that a subset of CBP80-bound cellular mRNAs contribute to recovery from significant cellular stress, including human retrovirus infection
μ⋆ masses: weak-lensing calibration of the Dark Energy Survey Year 1 redMaPPer clusters using stellar masses
We present the weak-lensing mass calibration of the stellar-mass-based μ⋆ mass proxy for redMaPPer galaxy clusters in the Dark Energy Survey Year 1. For the first time, we are able to perform a calibration of μ⋆ at high redshifts, z > 0.33. In a blinded analysis, we use ∼6000 clusters split into 12 subsets spanning the ranges 0.1 ≤ z < 0.65 and μ⋆ up to ∼5.5×1013M⊙, and infer the average masses of these subsets through modelling of their stacked weak-lensing signal. In our model, we account for the following sources of systematic uncertainty: shear measurement and photometric redshift errors, miscentring, cluster-member contamination of the source sample, deviations from the Navarro–Frenk–White halo profile, halo triaxiality, and projection effects. We use the inferred masses to estimate the joint mass–μ⋆–z scaling relation given by ⟨M200c|μ⋆,z⟩=M0(μ⋆/5.16×1012M⊙)Fμ⋆((1+z)/1.35)Gz. We find M0=(1.14±0.07)×1014M⊙ with Fμ⋆=0.76±0.06 and Gz = −1.14 ± 0.37. We discuss the use of μ⋆ as a complementary mass proxy to the well-studied richness λ for: (i) exploring the regimes of low z, λ < 20 and high λ, z ∼ 1; and (ii) testing systematics such as projection effects for applications in cluster cosmology
- …