48 research outputs found

    Pharmacokinetics and tissue depletion of doxycycline administered at high dosage to broiler chickens via the drinking water

    Get PDF
    The recommended use of doxycycline (DC) to broiler chicken is 100 mg/L via the drinking water and a 7-day withdrawal time (WDT). However, study of a higher dosage is desirable because of the possible increase of antimicrobial resistance and disease spectrum. Tissue DC residues exceeding the current maximum residue levels (MRL) was our major concern. Therefore, serum concentration and tissue depletion of DC hyclate after administration of 200 mg/L of DC in the drinking water for five consecutive days were studied. The steady-state DC concentration (8.3 ± 0.9 μg/mL) was reached on the third day of medication. The elimination constant (0.05 ± 0.01 1/h), half-life (14.9 ± 1.4 h), area under concentration versus time curve (81.0 ± 9.9 h·μg/mL) and mean residence time (22.7 ± 2.5 h) were obtained using a non-compartmental pharmacokinetic model. It was determined that the current 7-day WDT regulation was still legitimate for the kidney and liver as well as for the breast and leg muscles, which were estimated by linear regression analysis of the 99% upper distribution limit. The unregulated heart and gizzard were considered safe even when the lowest MRL of muscle (100 ng/g) was applied. While at the present time the extra-label use of drugs is only allowed under specific conditions, in the future it may become necessary to increase the general dosage of DC, and the current results suggest a safe range of DC hyclate in chicken; however, skin/fat tissue residues warrant further studies

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Implications of hydrogen uptake and transport for corrosion fatigue crack growth

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN023899 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore