19 research outputs found
Adherence to Interferon β-1b Treatment in Patients with Multiple Sclerosis in Spain
Adherence to interferon β-1b (INFβ-1b) therapy is essential to maximize the beneficial effects of treatment in multiple sclerosis (MS). For that reason, the main objectives of this study are to assess adherence to INFβ-1b in patients suffering from MS in Spain, and to identify the factors responsible for adherence in routine clinical practice.This was an observational, retrospective, cross-sectional study including 120 Spanish patients with MS under INFβ-1b treatment. Therapeutic adherence was assessed with Morisky-Green test and with the percentage of doses received. The proportion of adherent patients assessed by Morisky-Green test was 68.3%, being indicative of poor adherence. Nevertheless, the percentage of doses received, which was based on the number of injected medication, was 94.3%. The main reason for missing INFβ-1b injections was forgetting some of the administrations (64%). Therefore, interventions that diminish forgetfulness might have a positive effect in the proportion of adherent patients and in the percentage of doses received. In addition, age and comorbidities had a significant effect in the number of doses injected per month, and should be considered in the management of adherence in MS patients.Among all the available methods for assessing adherence, the overall consumption of the intended dose has to be considered when addressing adherence
The E-NTPDase family of ectonucleotidases: Structure function relationships and pathophysiological significance
Ectonucleotidases are ectoenzymes that hydrolyze extracellular nucleotides to the respective nucleosides. Within the past decade, ectonucleotidases belonging to several enzyme families have been discovered, cloned and characterized. In this article, we specifically address the cell surface-located members of the ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase/CD39) family (NTPDase1,2,3, and 8). The molecular identification of individual NTPDase subtypes, genetic engineering, mutational analyses, and the generation of subtype-specific antibodies have resulted in considerable insights into enzyme structure and function. These advances also allow definition of physiological and patho-physiological implications of NTPDases in a considerable variety of tissues. Biological actions of NTPDases are a consequence (at least in part) of the regulated phosphohydrolytic activity on extracellular nucleotides and consequent effects on P2-receptor signaling. It further appears that the spatial and temporal expression of NTPDases by various cell types within the vasculature, the nervous tissues and other tissues impacts on several patho-physiological processes. Examples include acute effects on cellular metabolism, adhesion, activation and migration with other protracted impacts upon developmental responses, inclusive of cellular proliferation, differentiation and apoptosis, as seen with atherosclerosis, degenerative neurological diseases and immune rejection of transplanted organs and cells. Future clinical applications are expected to involve the development of new therapeutic strategies for transplantation and various inflammatory cardiovascular, gastrointestinal and neurological diseases
CD8+ T-cell pathogenicity in Rasmussen encephalitis elucidated by large-scale T-cell receptor sequencing
Therapeutic Intervention in Multiple Sclerosis with Alpha B-Crystallin: A Randomized Controlled Phase IIa Trial
As a molecular chaperone and activator of Toll-like receptor 2-mediated protective responses by microglia and macrophages, the small heat shock protein alpha B-crystallin (HspB5) exerts therapeutic effects in different animal models for neuroinflammation, including the model for multiple sclerosis (MS). Yet, HspB5 can also stimulate human antigen-specific memory T cells to release IFN-γ, a cytokine with well-documented detrimental effects during MS. In this study, we explored in a Phase IIa randomized clinical trial the therapeutic application of HspB5 in relapsing-remitting MS (RR-MS), using intravenous doses sufficient to support its protective effects, but too low to trigger pathogenic memory T-cell responses. These sub-immunogenic doses were selected based on in vitro analysis of the dose-response profile of human T cells and macrophages to HspB5, and on the immunological effects of HspB5 in healthy humans as established in a preparatory Phase I study. In a 48-week randomized, placebo-controlled, double-blind Phase IIa trial, three bimonthly intravenous injections of 7.5, 12.5 or 17.5 mg HspB5 were found to be safe and well tolerated in RR-MS patients. While predefined clinical endpoints did not differ significantly between the relatively small groups of MS patients treated with either HspB5 or placebo, repeated administration especially of the lower doses of HspB5 led to a progressive decline in MS lesion activity as monitored by magnetic resonance imaging (MRI), which was not seen in the placebo group. Exploratory linear regression analysis revealed this decline to be significant in the combined group receiving either of the two lower doses, and to result in a 76% reduction in both number and total volumes of active MRI lesions at 9 months into the study. These data provide the first indication for clinical benefit resulting from intervention in RR-MS with HspB5.ClinicalTrials.gov Phase I: NCT02442557; Phase IIa: NCT02442570
Hydrogen-Rich Saline Ameliorates Experimental Autoimmune Encephalomyelitis in C57BL/6 Mice Via the Nrf2-ARE Signaling Pathway
Genetic models for CNS inflammation.
Udgivelsesdato: 2001-FebThe use of transgenic technology to over-express or prevent expression of genes encoding molecules related to inflammation has allowed direct examination of their role in experimental disease. This article reviews transgenic and knockout models of CNS demyelinating disease, focusing primarily on the autoimmune disease multiple sclerosis, as well as conditions in which an inflammatory response makes a secondary contribution to tissue injury or repair, such as neurodegeneration, ischemia and trauma
