213 research outputs found

    Re-examining the Unified Theory of Acceptance and Use of Technology (UTAUT): Towards a Revised Theoretical Model

    Get PDF
    YesBased on a critical review of the Unified Theory of Acceptance and Use of Technology (UTAUT), this study first formalized an alternative theoretical model for explaining the acceptance and use of information system (IS) and information technology (IT) innovations. The revised theoretical model was then empirically examined using a combination of meta-analysis and structural equation modelling (MASEM) techniques. The meta-analysis was based on 1600 observations on 21 relationships coded from 162 prior studies on IS/IT acceptance and use. The SEM analysis showed that attitude: was central to behavioural intentions and usage behaviours, partially mediated the effects of exogenous constructs on behavioural intentions, and had a direct influence on usage behaviours. A number of implications for theory and practice are derived based on the findings

    Adaptive evolution of the vertebrate skeletal muscle sodium channel

    Get PDF
    Tetrodotoxin (TTX) is a highly potent neurotoxin that blocks the action potential by selectively binding to voltage-gated sodium channels (Nav). The skeletal muscle Nav (Nav1.4) channels in most pufferfish species and certain North American garter snakes are resistant to TTX, whereas in most mammals they are TTX-sensitive. It still remains unclear as to whether the difference in this sensitivity among the various vertebrate species can be associated with adaptive evolution. In this study, we investigated the adaptive evolution of the vertebrate Nav1.4 channels. By means of the CODEML program of the PAML 4.3 package, the lineages of both garter snakes and pufferfishes were denoted to be under positive selection. The positively selected sites identified in the p-loop regions indicated their involvement in Nav1.4 channel sensitivity to TTX. Most of these sites were located in the intracellular regions of the Nav1.4 channel, thereby implying the possible association of these regions with the regulation of voltage-sensor movement

    Stochastic analysis of the GAL genetic switch in Saccharomyces cerevisiae: Modeling and experiments reveal hierarchy in glucose repression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transcriptional regulation involves protein-DNA and protein-protein interactions. Protein-DNA interactions involve reactants that are present in low concentrations, leading to stochastic behavior. In addition, multiple regulatory mechanisms are typically involved in transcriptional regulation. In the <it>GAL </it>regulatory system of <it>Saccharomyces cerevisiae</it>, the inhibition of glucose is accomplished through two regulatory mechanisms: one through the transcriptional repressor Mig1p, and the other through regulating the amount of transcriptional activator Gal4p. However, the impact of stochasticity in gene expression and hierarchy in regulatory mechanisms on the phenotypic level is not clearly understood.</p> <p>Results</p> <p>We address the question of quantifying the effect of stochasticity inherent in these regulatory mechanisms on the performance of various genes under the regulation of Mig1p and Gal4p using a dynamic stochastic model. The stochastic analysis reveals the importance of both the mechanisms of regulation for tight expression of genes in the <it>GAL </it>network. The mechanism involving Gal4p is the dominant mechanism, yielding low variability in the expression of <it>GAL </it>genes. The mechanism involving Mig1p is necessary to maintain the switch-like response of certain <it>GAL </it>genes. The number of binding sites for Mig1p and Gal4p further influences the expression of the genes, with extra binding sites lowering the variability of expression. Our experiments involving growth on various substrates show that the trends predicted in mean expression and its variability are transmitted to the phenotypic level.</p> <p>Conclusion</p> <p>The mechanisms involved in the transcriptional regulation and their variability set up a hierarchy in the phenotypic response to growth on various substrates. Structural motifs, such as the number of binding sites and the mechanism of regulation, determine the level of stochasticity and eventually, the phenotypic response.</p

    A Proposed Model

    Get PDF
    Rocha-Penedo, R., Cruz-Jesus, F., & Oliveira, T. (2021). Opposite Outcomes of Social Media Use: A Proposed Model. In S. K. Sharma, Y. K. Dwivedi, B. Metri, & N. P. Rana (Eds.), Re-imagining Diffusion and Adoption of Information Technology and Systems: A Continuing Conversation - IFIP WG 8.6 International Conference on Transfer and Diffusion of IT, TDIT 2020, Proceedings (pp. 524-537). (IFIP Advances in Information and Communication Technology; Vol. 618). Springer. https://doi.org/10.1007/978-3-030-64861-9_46Social media are probably one of the most influential and disruptive technology of the present times. It is ubiquitous and has the capability to influence virtually every aspect of one’s life while, at the same time, also influence the way firms and public organizations operate and communicate with individuals. Although there is a plethora of studies in the IS literature focused on SM adoption and outcomes, studies hypothesizing positive and negative outcomes together are scarce. We propose a comprehensive research model to shed light on SM positive and negative outcomes, and how these affect one’s happiness. We also explore how personality traits can influence these relationships.authorsversionpublishe

    Formation of Trans-Activation Competent HIV-1 Rev:RRE Complexes Requires the Recruitment of Multiple Protein Activation Domains

    Get PDF
    The HIV-1 Rev trans-activator is a nucleocytoplasmic shuttle protein that is essential for virus replication. Rev directly binds to unspliced and incompletely spliced viral RNA via the cis-acting Rev Response Element (RRE) sequence. Subsequently, Rev oligomerizes cooperatively and interacts with the cellular nuclear export receptor CRM1. In addition to mediating nuclear RNA export, Rev also affects the stability, translation and packaging of Rev-bound viral transcripts. Although it is established that Rev function requires the multimeric assembly of Rev molecules on the RRE, relatively little is known about how many Rev monomers are sufficient to form a trans-activation competent Rev:RRE complex, or which specific activity of Rev is affected by its oligomerization. We here analyzed by functional studies how homooligomer formation of Rev affects the trans-activation capacity of this essential HIV-1 regulatory protein. In a gain-of-function approach, we fused various heterologous dimerization domains to an otherwise oligomerization-defective Rev mutant and were able to demonstrate that oligomerization of Rev is not required per se for the nuclear export of this viral trans-activator. In contrast, however, the formation of Rev oligomers on the RRE is a precondition to trans-activation by directly affecting the nuclear export of Rev-regulated mRNA. Moreover, experimental evidence is provided showing that at least two protein activation domains are required for the formation of trans-activation competent Rev:RRE complexes. The presented data further refine the model of Rev trans-activation by directly demonstrating that Rev oligomerization on the RRE, thereby recruiting at least two protein activation domains, is required for nuclear export of unspliced and incompletely spliced viral RNA

    Mesenchymal Stem Cells in Early Entry of Breast Cancer into Bone Marrow

    Get PDF
    BACKGROUND: An understanding of BC cell (BCC) entry into bone marrow (BM) at low tumor burden is limited when compared to highly metastatic events during heavy tumor burden. BCCs can achieve quiescence, without interfering with hematopoiesis. This occurs partly through the generation of gap junctions with BM stroma, located close to the endosteum. These events are partly mediated by the evolutionary conserved gene, Tac1. METHODOLOGY/PRINCIPAL FINDINGS: This study focuses on the role of mesenchymal stem cells (MSCs), Tac1, SDF-1 and CXCR4 in BCC entry into BM. The model is established in studies with low numbers of tumor cells, and focuses on cancer cells with low metastatic and invasion potential. This allowed us to recapitulate early event, and to study cancer cells with low invasive potential, even when they are part of larger numbers of highly metastatic cells. A novel migration assay showed a facilitating role of MSCs in BCC migration across BM endothelial cells. siRNA and ectopic expression studies showed a central role for Tac1 and secondary roles for SDF-1alpha and CXCR4. We also observed differences in the mechanisms between low invasive and highly metastatic cells. The in vitro studies were verified in xenogeneic mouse models that showed a preference for low invasive BCCs to BM, but comparable movement to lung and BM by highly metastatic BCCs. The expressions of Tac1 and production of SDF-1alpha were verified in primary BCCs from paired samples of BM aspirates and peripheral blood. CONCLUSIONS/SIGNIFICANCE: MSC facilitate BCC entry into BM, partly through Tac1-mediated regulation of SDF-1alpha and CXCR4. We propose a particular population of BCC with preference for BM could be isolated for characterization. This population might be the subset that enter BM at an early time period, and could be responsible for cancer resurgence and resistance to current therapies

    Reproducibility of Transcranial Doppler ultrasound in the middle cerebral artery

    Get PDF
    Abstract Background Transcranial Doppler ultrasound remains the only imaging modality that is capable of real-time measurements of blood flow velocity and microembolic signals in the cerebral circulation. We here assessed the repeatability and reproducibility of transcranial Doppler ultrasound in healthy volunteers and patients with symptomatic carotid artery stenosis. Methods Between March and August 2017, we recruited 20 healthy volunteers and 20 patients with symptomatic carotid artery stenosis. In a quiet temperature-controlled room, two 1-h transcranial Doppler measurements of blood flow velocities and microembolic signals were performed sequentially on the same day (within-day repeatability) and a third 7–14 days later (between-day reproducibility). Levels of agreement were assessed by interclass correlation co-efficient. Results In healthy volunteers (31±9 years, 11 male), within-day repeatability of Doppler measurements were 0.880 (95% CI 0.726–0.950) for peak velocity, 0.867 (95% CI 0.700–0.945) for mean velocity, and 0.887 (95% CI 0.741–0.953) for end-diastolic velocity. Between-day reproducibility was similar but lower: 0.777 (95% CI 0.526–0.905), 0.795 (95% CI 0.558–0.913), and 0.674 (95% CI 0.349–0.856) respectively. In patients (72±11 years, 11 male), within-day repeatability of Doppler measurements were higher: 0.926 (95% CI 0.826–0.970) for peak velocity, 0.922 (95% CI 0.817–0.968) for mean velocity, and 0.868 (95% CI 0.701–0.945) for end-diastolic velocity. Similarly, between-day reproducibility revealed lower values: 0.800 (95% CI 0.567–0.915), 0.786 (95% CI 0.542–0.909), and 0.778 (95% CI 0.527–0.905) respectively. In both cohorts, the intra-observer Bland Altman analysis demonstrated acceptable mean measurement differences and limits of agreement between series of middle cerebral artery velocity measurements with very few outliers. In patients, the carotid stenoses were 30–40% (n = 9), 40–50% (n = 6), 50–70% (n = 3) and > 70% (n = 2). No spontaneous embolisation was detected in either of the groups. Conclusions Transcranial Doppler generates reproducible data regarding the middle cerebral artery velocities. However, larger studies are needed to validate its clinical applicability. Trial registration ClinicalTrial.gov (ID NCT 03050567), retrospectively registered on 15/05/2017

    Recapitulation of tumor heterogeneity and molecular signatures in a 3D brain cancer model with decreased sensitivity to histone deacetylase inhibition

    Get PDF
    INTRODUCTION Physiologically relevant pre-clinical ex vivo models recapitulating CNS tumor micro-environmental complexity will aid development of biologically-targeted agents. We present comprehensive characterization of tumor aggregates generated using the 3D Rotary Cell Culture System (RCCS). METHODS CNS cancer cell lines were grown in conventional 2D cultures and the RCCS and comparison with a cohort of 53 pediatric high grade gliomas conducted by genome wide gene expression and microRNA arrays, coupled with immunohistochemistry, ex vivo magnetic resonance spectroscopy and drug sensitivity evaluation using the histone deacetylase inhibitor, Vorinostat. RESULTS Macroscopic RCCS aggregates recapitulated the heterogeneous morphology of brain tumors with a distinct proliferating rim, necrotic core and oxygen tension gradient. Gene expression and microRNA analyses revealed significant differences with 3D expression intermediate to 2D cultures and primary brain tumors. Metabolic profiling revealed differential profiles, with an increase in tumor specific metabolites in 3D. To evaluate the potential of the RCCS as a drug testing tool, we determined the efficacy of Vorinostat against aggregates of U87 and KNS42 glioblastoma cells. Both lines demonstrated markedly reduced sensitivity when assaying in 3D culture conditions compared to classical 2D drug screen approaches. CONCLUSIONS Our comprehensive characterization demonstrates that 3D RCCS culture of high grade brain tumor cells has profound effects on the genetic, epigenetic and metabolic profiles of cultured cells, with these cells residing as an intermediate phenotype between that of 2D cultures and primary tumors. There is a discrepancy between 2D culture and tumor molecular profiles, and RCCS partially re-capitulates tissue specific features, allowing drug testing in a more relevant ex vivo system

    Functional, Hedonic or Social? Exploring Antecedents and Consequences of Virtual Reality Rollercoaster Usage

    Get PDF
    During the last years, various media technologies such as Augmented Reality (AR) and Virtual Reality (VR) have gained increased attention in consumer markets and tourism. For theme parks, especially those with rollercoasters, wearable VR devices are expected to be associated with various benefits for tourists’ experience. Therefore, adventure park managers with VR rollercoasters have a keen interest in understanding the drivers and psychological mechanisms of their visitors, especially those associated with economic benefits. Against this background, this study provides a conceptual model grounded in the VR and AR literature. The model is then tested in a Finnish amusement park with a VR switchback, and analysed using structural equation modelling. Result show that entertainment value and service quality drive satisfaction and subsequently word of mouth, but results do not confirm the importance on visitors’ willingness to pay an extra fee for a VR experience. However, this economically crucial variable is determined by social presence of other people, indicating that visitors are willing to pay for experiencing an immersive experience with other people. Theoretical and managerial implications are derived, and avenues for further research discussed
    corecore