35 research outputs found
YAP1 Recruits c-Abl to Protect Angiomotin-Like 1 from Nedd4-Mediated Degradation
Tissue development and organ growth require constant remodeling of cell-cell contacts formed between epithelial cells. The Hippo signaling cascade curtails organ growth by excluding the transcriptional co-activator Yes Associated Protein 1 (YAP1) from the nucleus. Angiomotin family members recruit YAP1 to tight junctions [1], but whether YAP1 plays a specific role outside of the nucleus is currently unknown.The present study demonstrates that the E3 ubiquitin ligase Nedd4.2 targets Angiomotin-like 1 (AMOTL1), a family member that promotes the formation of epithelial tight junctions, for ubiquitin-dependent degradation. Unexpectedly, YAP1 antagonizes the function of Nedd4.2, and protects AMOTL1 against Nedd4.2-mediated degradation. YAP1 recruits c-Abl, a tyrosine kinase that binds and phosphorylates Nedd4.2 on tyrosine residues, thereby modifying its ubiquitin-ligase activity.Our results uncover a novel function for cytoplasmic YAP1. YAP1 recruits c-Abl to protect AMOTL1 against Nedd4.2-mediated degradation. Thus, YAP1, excluded from the nucleus, contributes to the maintenance of tight junctions
The management of acute venous thromboembolism in clinical practice. Results from the European PREFER in VTE Registry
Venous thromboembolism (VTE) is a significant cause of morbidity and mortality in Europe. Data from real-world registries are necessary, as clinical trials do not represent the full spectrum of VTE patients seen in clinical practice. We aimed to document the epidemiology, management and outcomes of VTE using data from a large, observational database. PREFER in VTE was an international, non-interventional disease registry conducted between January 2013 and July 2015 in primary and secondary care across seven European countries. Consecutive patients with acute VTE were documented and followed up over 12 months. PREFER in VTE included 3,455 patients with a mean age of 60.8 ± 17.0 years. Overall, 53.0 % were male. The majority of patients were assessed in the hospital setting as inpatients or outpatients (78.5 %). The diagnosis was deep-vein thrombosis (DVT) in 59.5 % and pulmonary embolism (PE) in 40.5 %. The most common comorbidities were the various types of cardiovascular disease (excluding hypertension; 45.5 %), hypertension (42.3 %) and dyslipidaemia (21.1 %). Following the index VTE, a large proportion of patients received initial therapy with heparin (73.2 %), almost half received a vitamin K antagonist (48.7 %) and nearly a quarter received a DOAC (24.5 %). Almost a quarter of all presentations were for recurrent VTE, with >80 % of previous episodes having occurred more than 12 months prior to baseline. In conclusion, PREFER in VTE has provided contemporary insights into VTE patients and their real-world management, including their baseline characteristics, risk factors, disease history, symptoms and signs, initial therapy and outcomes
Erratum to: Measurement of forward J/Ï production cross-sections in pp collisions at s = 13 TeV
No abstract available
Recommended from our members
Recovery of forest structure following large-scale windthrows in the northwestern amazon
The dynamics of forest recovery after windthrows (i.e., broken or uprooted trees by wind) are poorly understood in tropical forests. The Northwestern Amazon (NWA) is characterized by a higher occurrence of windthrows, greater rainfall, and higher annual tree mortality rates (~2%) than the Central Amazon (CA). We combined forest inventory data from three sites in the Iquitos region of Peru, with recovery periods spanning 2, 12, and 22 years following windthrow events. Study sites and sampling areas were selected by assessing the windthrow severity using remote sensing. At each site, we recorded all trees with a diameter at breast height (DBH) â„ 10 cm along transects, capturing the range of windthrow severity from old-growth to highly disturbed (mortality > 60%) forest. Across all damage classes, tree density and basal area recovered to >90% of the old-growth values after 20 years. Aboveground biomass (AGB) in old-growth forest was 380 (±156) Mg haâ1 . In extremely disturbed areas, AGB was still reduced to 163 (±68) Mg haâ1 after 2 years and 323 (± 139) Mg haâ1 after 12 years. This recovery rate is ~50% faster than that reported for Central Amazon forests. The faster recovery of forest structure in our study region may be a function of its higher productivity and adaptability to more frequent and severe windthrows. These varying rates of recovery highlight the importance of extreme wind and rainfall on shaping gradients of forest structure in the Amazon, and the different vulnerabilities of these forests to natural disturbances whose severity and frequency are being altered by climate change
Recommended from our members
Recovery of forest structure following large-scale windthrows in the northwestern amazon
The dynamics of forest recovery after windthrows (i.e., broken or uprooted trees by wind) are poorly understood in tropical forests. The Northwestern Amazon (NWA) is characterized by a higher occurrence of windthrows, greater rainfall, and higher annual tree mortality rates (~2%) than the Central Amazon (CA). We combined forest inventory data from three sites in the Iquitos region of Peru, with recovery periods spanning 2, 12, and 22 years following windthrow events. Study sites and sampling areas were selected by assessing the windthrow severity using remote sensing. At each site, we recorded all trees with a diameter at breast height (DBH) â„ 10 cm along transects, capturing the range of windthrow severity from old-growth to highly disturbed (mortality > 60%) forest. Across all damage classes, tree density and basal area recovered to >90% of the old-growth values after 20 years. Aboveground biomass (AGB) in old-growth forest was 380 (±156) Mg haâ1 . In extremely disturbed areas, AGB was still reduced to 163 (±68) Mg haâ1 after 2 years and 323 (± 139) Mg haâ1 after 12 years. This recovery rate is ~50% faster than that reported for Central Amazon forests. The faster recovery of forest structure in our study region may be a function of its higher productivity and adaptability to more frequent and severe windthrows. These varying rates of recovery highlight the importance of extreme wind and rainfall on shaping gradients of forest structure in the Amazon, and the different vulnerabilities of these forests to natural disturbances whose severity and frequency are being altered by climate change