5 research outputs found

    Novel Methods for Predicting Fluid Responsiveness in Critically Ill Patients—A Narrative Review

    No full text
    In patients with acute circulatory failure, fluid administration represents a first-line therapeutic intervention for improving cardiac output. However, only approximately 50% of patients respond to fluid infusion with a significant increase in cardiac output, defined as fluid responsiveness. Additionally, excessive volume expansion and associated hyperhydration have been shown to increase morbidity and mortality in critically ill patients. Thus, except for cases of obvious hypovolaemia, fluid responsiveness should be routinely tested prior to fluid administration. Static markers of cardiac preload, such as central venous pressure or pulmonary artery wedge pressure, have been shown to be poor predictors of fluid responsiveness despite their widespread use to guide fluid therapy. Dynamic tests including parameters of aortic blood flow or respiratory variability of inferior vena cava diameter provide much higher diagnostic accuracy. Nevertheless, they are also burdened with several significant limitations, reducing the reliability, or even precluding their use in many clinical scenarios. This non-systematic narrative review aims to provide an update on the novel, less employed dynamic tests of fluid responsiveness evaluation in critically ill patients

    Working Brigades, Hops Harvests and Hops Production in Czechoslovakia in 1945-1970

    No full text

    Prediction of Fluid Responsiveness Using Combined End-Expiratory and End-Inspiratory Occlusion Tests in Cardiac Surgical Patients

    No full text
    End-expiratory occlusion (EEO) and end-inspiratory occlusion (EIO) tests have been successfully used to predict fluid responsiveness in various settings using calibrated pulse contour analysis and echocardiography. The aim of this study was to test if respiratory occlusion tests predicted fluid responsiveness reliably in cardiac surgical patients with protective ventilation. This single-centre, prospective study, included 57 ventilated patients after elective coronary artery bypass grafting who were indicated for fluid expansion. Baseline echocardiographic measurements were obtained and patients with significant cardiac pathology were excluded. Cardiac index (CI), stroke volume and stroke volume variation were recorded using uncalibrated pulse contour analysis at baseline, after performing EEO and EIO tests and after volume expansion (7 mL/kg of succinylated gelatin). Fluid responsiveness was defined as an increase in cardiac index by 15%. Neither EEO, EIO nor their combination predicted fluid responsiveness reliably in our study. After a combined EEO and EIO, a cut-off point for CI change of 16.7% predicted fluid responsiveness with a sensitivity of 61.8%, specificity of 69.6% and ROC AUC of 0.593. In elective cardiac surgical patients with protective ventilation, respiratory occlusion tests failed to predict fluid responsiveness using uncalibrated pulse contour analysis

    The Bibliography of the Economic and Social History in the Czech Republic in the 1990s

    No full text
    corecore