64,882 research outputs found
Spatiotemporal buildup of the Kondo screening cloud
We investigate how the Kondo screening cloud builds up as a function of space
and time. Starting from an impurity spin decoupled from the conduction band,
the Kondo coupling is switched on at time t=0. We work at the Toulouse point
where one can obtain exact analytical results for the ensuing spin dynamics at
both zero and nonzero temperature T. For t>0 the Kondo screening cloud starts
building up in the wake of the impurity spin being transported to infinity. In
this buildup process the impurity spin--conduction band spin susceptibility
shows a sharp light cone due to causality, while the corresponding correlation
function has a tail outside the light cone. At T=0 this tail has a power law
decay as a function of distance from the impurity, which we interpret as due to
initial entanglement in the Fermi sea.Comment: 10 pages, 9 figure
Spiral and Taylor vortex fronts and pulses in axial through-flow
The influence of an axial through-flow on the spatiotemporal growth behavior
of different vortex structures in the Taylor-Couette system with radius ratio
eta=0.5 is determined. The Navier Stokes equations (NSE) linearized around the
basic Couette-Poiseuille flow are solved numerically with a shooting method in
a wide range of through-flow strengths Re and different rates of co- and
counterrotating cylinders for toroidally closed vortices with azimuthal wave
number m=0 and for spiral vortex flow with m=+1 and m=-1. For each of these
three different vortex varieties we have investigated (i) axially extended
vortex structures, (ii) axially localized vortex pulses, and (iii) vortex
fronts. The complex dispersion relations of the linearized NSE for vortex modes
with the three different m are evaluated for real axial wave numbers for (i)
and over the plane of complex axial wave numbers for (ii,iii). We have also
determined the Ginzburg-Landau amplitude equation (GLE) approximation in order
to analyze its predictions for the vortex stuctures (ii,iii). Critical
bifurcation thresholds for extended vortex structures are evaluated. The
boundaries between absolute and convective instability of the basic state for
vortex pulses are determined with a saddle-point analysis of the dispersion
relations. Finally, the linearly selected front behavior of growing vortex
structures is investigated. For the two front intensity profiles (increasing in
positive or negative axial direction) we have determined front velocities,
axial growth rates, and the wave numbers and frequencies of the unfolding
vortex patterns with azimuthal wave numbers m=0, +1, -1, respectively.Comment: 15 pages, 9 figure
Numerical Models for the Diffuse Ionized Gas in Galaxies. II. Three-dimensional radiative transfer in inhomogeneous interstellar structures as a tool for analyzing the diffuse ionized gas
Aims: We systematically explore a plausible subset of the parameter space
involving effective temperatures and metallicities of the ionizing stellar
sources, the effects of the hardening of their radiation by surrounding leaky
HII regions with different escape fractions, as well as different scenarios for
the clumpiness of the DIG, and compute the resulting line strength ratios for a
number of diagnostic optical emission lines.
Methods: For the ionizing fluxes we compute a grid of stellar spectral energy
distributions (SEDs) from detailed, fully non-LTE model atmospheres that
include the effects of stellar winds and line blocking and blanketing. To
calculate the ionization and temperature structure in the HII regions and the
diffuse ionized gas we use spherically symmetric photoionization models as well
as state-of-the-art three-dimensional (3D) non-LTE radiative transfer
simulations, considering hydrogen, helium, and the most abundant metals.
Results: We provide quantitative predictions of how the line ratios from HII
regions and the DIG vary as a function of metallicity, stellar effective
temperature, and escape fraction from the HII region. The range of predicted
line ratios reinforces the hypothesis that the DIG is ionized by (filtered)
radiation from hot stars; however, comparison of observed and predicted line
ratios indicates that the DIG is typically ionized with a softer SED than
predicted by the chosen stellar population synthesis model. Even small changes
in simulation parameters like the clumping factor can lead to considerable
variation in the ionized volume. Both for a more homogeneous gas and a very
inhomogeneous gas containing both dense clumps and channels with low gas
density, the ionized region in the dilute gas above the galactic plane can
cease to be radiation-bounded, allowing the ionizing radiation to leak into the
intergalactic medium.Comment: 21 pages, 9 figures, accepted by A&
Dark solitons, modulation instability and breathers in a chain of weakly non-linear oscillators with cyclic symmetry
In the aerospace industry the trend for light-weight structures and the
resulting complex dynamic behaviours currently challenge vibration engineers.
In many cases, these light-weight structures deviate from linear behaviour, and
complex nonlinear phenomena can be expected. We consider a cyclically symmetric
system of coupled weakly nonlinear undamped oscillators that could be
considered a minimal model for different cyclic and symmetric aerospace
structures experiencing large deformations. The focus is on localised
vibrations that arise from wave envelope modulation of travelling waves. For
the defocussing parameter range of the approximative nonlinear evolution
equation, we show the possible existence of dark solitons and discuss their
characteristics. For the focussing parameter range, we characterise modulation
instability and illustrate corresponding nonlinear breather dynamics.
Furthermore, we show that for stronger nonlinearity or randomness in initial
conditions, transient breather-type dynamics and decay into bright solitons
appear. The findings suggest that significant vibration localisation may arise
due to mechanisms of nonlinear modulation dynamics
Prompt Formation of Organic Acids in Pulse Ozonation of Terpenes on Aqueous Surfaces
A major atmospheric process, the gas-phase ozonation of terpenes yields suites of products via a cascade of chemically activated intermediates that ranges from primary ozonides to dioxiranes. If a similar mechanism operated in water, as it is generally assumed, such intermediates would be deactivated within picoseconds and, henceforth, be unable to produce carboxylic acids in microseconds. Herein, we report the online electrospray mass spectrometric detection of (M + 2O – H^+) and (M + 3O – H^+) carboxylates on the surface of aqueous β-caryophyllene (C_(15)H_(24), M = 204 Da) microjets exposed to a few ppmv of O_3(g) for < 10 μs. Since neither species is formed on dry solvent microjets and both incorporate deuterium from D_2O, we infer that carboxylates ensue from the interaction of nascent intermediates with interfacial water via heretofore unreported processes. These interfacial events proceed much faster than those in bulk liquids saturated with ozone
Multistability and localization in forced cyclic symmetric structures modelled by weakly-coupled Duffing oscillators
Many engineering structures are composed of weakly coupled sectors assembled
in a cyclic and ideally symmetric configuration, which can be simplified as
forced Duffing oscillators. In this paper, we study the emergence of localized
states in the weakly nonlinear regime. We show that multiple spatially
localized solutions may exist, and the resulting bifurcation diagram strongly
resembles the snaking pattern observed in a variety of fields in physics, such
as optics and fluid dynamics. Moreover, in the transition from the linear to
the nonlinear behaviour isolated branches of solutions are identified.
Localization is caused by the hardening effect introduced by the nonlinear
stiffness, and occurs at large excitation levels. Contrary to the case of
mistuning, the presented localization mechanism is triggered by the
nonlinearities and arises in perfectly homogeneous systems
Structuring of sapphire by laser-assisted methods, ion-beam implantation, and chemical wet etching
Sapphire is an attractive material for micro- and opto-electronic systems applications because of its excellent mechanical and chemical properties. However, because of its hardness, sapphire is difficult to machine. Titanium-doped sapphire is a well-known broadly tunable and short-pulse laser material and a promising broadband light source for applications in low-coherence interferometry. We investigated several methods to fabricate rib structures in sapphire that can induce channel waveguiding in Ti:sapphire planar waveguides. These methods include direct laser ablation, laser-micromachined polyimide stripes, selective reactive ion etching, and ion-beam implantation followed by chemical wet etching. Depending on the method, we fabricated channels with depths of up to 1.5 µm. We will discuss and compare these methods. Reactive ion etching through laser-structured polyimide contact-masks has so far provided the best results in terms of etching speed and roughness of the etched structures
- …
