11 research outputs found
Danger Invariants
Static analysers search for overapproximating proofs of safety
commonly known as safety invariants. Conversely, static bug finders
(e.g. Bounded Model Checking) give evidence for the failure of an assertion in the form of a counterexample trace. As opposed to safety invariants, the size of a counterexample is dependent on the depth of the bug, i.e., the length of the execution trace prior to the error state, which also determines the computational effort required to find them. We propose a way of expressing danger proofs that is independent of the depth of bugs. Essentially, such danger proofs constitute a compact representation of a counterexample trace, which we call a danger invariant. Danger invariants summarise sets of traces that are guaranteed to be able to reach an error state. Our conjecture is that such danger proofs will enable the design of bug finding analyses for which the computational effort is independent of the depth of bugs, and thus find deep bugs more efficiently. As an exemplar of an analysis that uses danger invariants, we design a bug finding technique based on a synthesis engine. We implemented this technique and compute danger invariants for intricate programs taken from SV-COMP 2016
Membrane Potential Controls Adipogenic and Osteogenic Differentiation of Mesenchymal Stem Cells
Background: Control of stem cell behavior is a crucial aspect of developmental biology and regenerative medicine. While the functional role of electrophysiology in stem cell biology is poorly understood, it has become clear that endogenous ion flows represent a powerful set of signals by means of which cell proliferation, differentiation, and migration can be controlled in regeneration and embryonic morphogenesis. Methodology/Principal Findings: We examined the membrane potential (Vmem) changes exhibited by human mesenchymal stem cells (hMSCs) undergoing adipogenic (AD) and osteogenic (OS) differentiation, and uncovered a characteristic hyperpolarization of differentiated cells versus undifferentiated cells. Reversal of the progressive polarization via pharmacological modulation of transmembrane potential revealed that depolarization of hMSCs prevents differentiation. In contrast, treatment with hyperpolarizing reagents upregulated osteogenic markers. Conclusions/Significance: Taken together, these data suggest that the endogenous hyperpolarization is a functiona
Integrated coastal reserve planning: making the land-sea connection
Land use, watershed processes, and coastal biodiversity are often intricately linked, yet landsea interactions are usually ignored when selecting terrestrial and marine reserves with existing models. Such oversight increases the risk that reserves will fail to achieve their conservation objectives. The conceptual model underlying existing reserve selection models presumes each site is a closed ecological system, unaffected by inputs from elsewhere. As a short-term objective, we recommend extending land-conservation analyses to account for effects on marine biodiversity by considering linkages between ecosystems. This level of integration seems feasible and directly relevant to agencies and conservancies engaged in protecting coastal lands. We propose an approach that evaluates terrestrial sites based on whether they benefit or harm marine species or habitats. We then consider a hypothetical example involving estuarine nurseries. Whether this approach will produce more effective terrestrial reserves remains to be seen
Serotonin receptor mechanisms mediate the discriminative stimulus properties of the atypical antipsychotic clozapine in C57BL/6 mice
Rationale: The atypical antipsychotic drug (APD) clozapine (CLZ) has been shown to have a robust discriminative cue in rats, pigeons, and monkeys in two-choice drug discrimination procedures. Objectives: The present study determined whether a two-choice drug discrimination procedure with CLZ could be established in C57BL/6 mice and whether this procedure could distinguish between atypical and typical APDs. Methods: C57BL/6 male mice were trained to discriminate 2.5 mg/kg CLZ from vehicle in a two-lever drug discrimination procedure. Results: Generalization testing with CLZ produced full substitution at the 2.5- and 5.0-mg/kg doses with an ED(50) of 1.14 mg/kg. The atypical APDs olanzapine (ED(50)=0.24 mg/ kg), risperidone (ED(50)=0.072 mg/kg), and ziprasidone (ED(50)=0.33 mg/kg) fully substituted for CLZ's discriminative cue, while the typical APD haloperidol failed to substitute for CLZ. Generalization testing with selective ligands showed that the serotonin (5-HT)(2A/2B/2C) antagonist ritanserin fully substituted for CLZ (ED(50)=2.08 mg/ kg) and that the 5-HT receptor agonist quipazine significantly attenuated CLZ's discriminative cue without disrupting response rates. The muscarinic receptor antagonist scopolamine, the dopamine agonist amphetamine, and the 5-HT agonist quipazine failed to substitute for CLZ. Conclusions: These results demonstrated that antagonism of 5-HT receptors plays an important role in mediating the discriminative stimulus properties of the atypical APD CLZ in C57BL/6 mice. The atypical APDs olanzapine, risperidone, and ziprasidone fully substituted for CLZ, while the typical APD haloperidol did not. These results suggest that CLZ drug discrimination in C57BL/6 mice may be an effective preclinical behavioral assay for screening atypical from typical antipsychotic drugs
Translational Value of Drug Discrimination with Typical and Atypical Antipsychotic Drugs
This chapter focuses on the translational value of drug discrimination as a preclinical assay for drug development. In particular, the importance of two factors, i.e., training dose and species, for drug discrimination studies with the atypical antipsychotic clozapine is examined. Serotonin receptors appear to be an important pharmacological mechanism mediating clozapine’s discriminative cue in both rats and mice, although differences are clearly evident as antagonism of cholinergic muscarinic receptors is important in rats at a higher training dose (5.0 mg/kg) of clozapine, but not at a lower training dose (1.25 mg/kg). Antagonism of α1 adrenoceptors is a sufficient mechanism in C57BL/6 and 129S2 mice to mimic clozapine’s cue, but not in DBA/2 and B6129S mice, and only produces partial substitution in low-dose clozapine discrimination in rats. Dopamine antagonism produces partial substitution for clozapine in DBA/2, 129S2, and B6129S mice, but not in C57BL/6 mice, and partial substitution is seen with D4 antagonism in low-dose clozapine drug discrimination in rats. Thus, it is evident that clozapine has a complex mixture of receptor contributions towards its discriminative cue based on the data from the four mouse strains that have been tested that is similar to the results from rat studies. A further examination of antipsychotic stimulus properties in humans, particularly in patients with schizophrenia, would go far in evaluating the translational value of the drug discrimination paradigm for antipsychotic drugs
The Discriminative Stimulus Properties of Drugs Used to Treat Depression and Anxiety
Drug discrimination is a powerful tool for evaluating the stimulus effects of psychoactive drugs and for linking these effects to pharmacological mechanisms. This chapter reviews the primary findings from drug discrimination studies of antidepressant and anxiolytic drugs, including novel pharmacological mechanisms. The stimulus properties revealed from these animal studies largely correspond to the receptor affinities of antidepressant and anxiolytic drugs, indicating that subjective effects may correspond to either therapeutic or side effects of these medications. We discuss drug discrimination findings concerning adjunctive medications and novel pharmacologic strategies in antidepressant and anxiolytic research. Future directions for drug discrimination work include an urgent need to explore the subjective effects of medications in animal models, to better understand shifts in stimulus sensitivity during prolonged treatments, and to further characterize stimulus effects in female subjects. We conclude that drug discrimination is an informative preclinical procedure that reveals the interoceptive effects of pharmacological mechanisms as they relate to behaviors that are not captured in other preclinical models