285 research outputs found
The relationship between the frequency of news release and the information asymmetry: The role of uninformed trading
This paper shows that the degree of information asymmetry is lower for firms with more frequent news releases. The relation holds for various measures of information asymmetry such as the probability of information-based trading (. PIN), permanent price impact, and adverse selection component of bid-ask spread, even after adjusting for endogeneity between news release and information asymmetry. By decomposing the PIN into intensities of uninformed and informed trades, similarly to Brown and Hillegeist (2007), we find that intensity of uninformed trading increases much more than that of informed trading for firms with more frequent news releases. As a result, information asymmetry, as is measured by PIN, decreases for such firms due to the large increase in the intensity of uninformed trading. Our findings highlight not only the importance of news releases in leveling the playing field of investors but also the role of uninformed investors in reducing trading cost due to information asymmetry. © 2013 Elsevier B.V..Srinivasan Sankaraguruswamy, Jianfeng Shen, Takeshi Yamad
Recommended from our members
Tandem metabolic reaction-based sensors unlock in vivo metabolomics.
Mimicking metabolic pathways on electrodes enables in vivo metabolite monitoring for decoding metabolism. Conventional in vivo sensors cannot accommodate underlying complex reactions involving multiple enzymes and cofactors, addressing only a fraction of enzymatic reactions for few metabolites. We devised a single-wall-carbon-nanotube-electrode architecture supporting tandem metabolic pathway-like reactions linkable to oxidoreductase-based electrochemical analysis, making a vast majority of metabolites detectable in vivo. This architecture robustly integrates cofactors, self-mediates reactions at maximum enzyme capacity, and facilitates metabolite intermediation/detection and interference inactivation through multifunctional enzymatic use. Accordingly, we developed sensors targeting 12 metabolites, with 100-fold-enhanced signal-to-noise ratio and days-long stability. Leveraging these sensors, we monitored trace endogenous metabolites in sweat/saliva for noninvasive health monitoring, and a bacterial metabolite in the brain, marking a key milestone for unraveling gut microbiota-brain axis dynamics
The human Pat1b protein: a novel mRNA deadenylation factor identified by a new immunoprecipitation technique
The complex of the yeast Lsm1p-7p proteins with Pat1p is an important mRNA decay factor that is involved in translational shutdown of deadenylated mRNAs and thus prepares these mRNAs for degradation. While the Lsm proteins are highly conserved, there is no unique mammalian homolog of Pat1p. To identify proteins that interact with human LSm1, we developed a novel immunoprecipitation technique that yields virtually pure immunocomplexes. Mass-spec analysis therefore identifies mostly true positives, avoiding tedious functional screening. The method unambiguously identified the Pat1p homolog in HeLa cells, Pat1b. When targeted to a reporter mRNA, Pat1b represses gene expression by inducing deadenylation of the mRNAs. This demonstrates that Pat1b, unlike yPat1p, acts as an mRNA-specific deadenylation factor, highlighting the emerging importance of deadenylation in the mRNA regulation of higher eukaryotes
Transcription factor regulation can be accurately predicted from the presence of target gene signatures in microarray gene expression data
Deciphering transcription factor networks from microarray data remains difficult. This study presents a simple method to infer the regulation of transcription factors from microarray data based on well-characterized target genes. We generated a catalog containing transcription factors associated with 2720 target genes and 6401 experimentally validated regulations. When it was available, a distinction between transcriptional activation and inhibition was included for each regulation. Next, we built a tool (www.tfacts.org) that compares submitted gene lists with target genes in the catalog to detect regulated transcription factors. TFactS was validated with published lists of regulated genes in various models and compared to tools based on in silico promoter analysis. We next analyzed the NCI60 cancer microarray data set and showed the regulation of SOX10, MITF and JUN in melanomas. We then performed microarray experiments comparing gene expression response of human fibroblasts stimulated by different growth factors. TFactS predicted the specific activation of Signal transducer and activator of transcription factors by PDGF-BB, which was confirmed experimentally. Our results show that the expression levels of transcription factor target genes constitute a robust signature for transcription factor regulation, and can be efficiently used for microarray data mining
Degradation of YRA1 Pre-mRNA in the Cytoplasm Requires Translational Repression, Multiple Modular Intronic Elements, Edc3p, and Mex67p
The yeast YRA1 pre-mRNA contains multiple intronic elements that regulate transcript decay and translatability via the Edc3p decapping activator and the Mex67p/Mtr2p export receptor
Dead-box proteins: a family affair—active and passive players in RNP-remodeling
DEAD-box proteins are characterized by nine conserved motifs. According to these criteria, several hundreds of these proteins can be identified in databases. Many different DEAD-box proteins can be found in eukaryotes, whereas prokaryotes have small numbers of different DEAD-box proteins. DEAD-box proteins play important roles in RNA metabolism, and they are very specific and cannot mutually be replaced. In vitro, many DEAD-box proteins have been shown to have RNA-dependent ATPase and ATP-dependent RNA helicase activities. From the genetic and biochemical data obtained mainly in yeast, it has become clear that these proteins play important roles in remodeling RNP complexes in a temporally controlled fashion. Here, I shall give a general overview of the DEAD-box protein family
Sensitivity of Global Translation to mTOR Inhibition in REN Cells Depends on the Equilibrium between eIF4E and 4E-BP1
Initiation is the rate-limiting phase of protein synthesis, controlled by signaling pathways regulating the phosphorylation of translation factors. Initiation has three steps, 43S, 48S and 80S formation. 43S formation is repressed by eIF2α phosphorylation. The subsequent steps, 48S and 80S formation are enabled by growth factors. 48S relies on eIF4E-mediated assembly of eIF4F complex; 4E-BPs competitively displace eIF4E from eIF4F. Two pathways control eIF4F: 1) mTORc1 phosphorylates and inactivates 4E-BPs, leading to eIF4F formation; 2) the Ras-Mnk cascade phosphorylates eIF4E. We show that REN and NCI-H28 mesothelioma cells have constitutive activation of both pathways and maximal translation rate, in the absence of exogenous growth factors. Translation is rapidly abrogated by phosphorylation of eIF2α. Surprisingly, pharmacological inhibition of mTORc1 leads to the complete dephosphorylation of downstream targets, without changes in methionine incorporation. In addition, the combined administration of mTORc1 and MAPK/Mnk inhibitors has no additive effect. The inhibition of both mTORc1 and mTORc2 does not affect the metabolic rate. In spite of this, mTORc1 inhibition reduces eIF4F complex formation, and depresses translocation of TOP mRNAs on polysomes. Downregulation of eIF4E and overexpression of 4E-BP1 induce rapamycin sensitivity, suggesting that disruption of eIF4F complex, due to eIF4E modulation, competes with its recycling to ribosomes. These data suggest the existence of a dynamic equilibrium in which eIF4F is not essential for all mRNAs and is not displaced from translated mRNAs, before recycling to the next
Platelet GPIIb supports initial pulmonary retention but inhibits subsequent proliferation of melanoma cells during hematogenic metastasis
Platelets modulate the process of cancer metastasis. However, current knowledge on the direct interaction of platelets and tumor cells is mostly based on findings obtained in vitro. We addressed the role of the platelet fibrinogen receptor glycoprotein IIb (integrin alpha IIb) for experimental melanoma metastasis in vivo. Highly metastatic B16-D5 melanoma cells were injected intravenously into GPIIb-deficient (GPIIb(-/-)) or wildtype (WT) mice. Acute accumulation of tumor cells in the pulmonary vasculature was assessed in real-time by confocal videofluorescence microscopy. Arrest of tumor cells was dramatically reduced in GPIIb(-/-) mice as compared to WT. Importantly, we found that mainly multicellular aggregates accumulated in the pulmonary circulation of WT, instead B16-D5 aggregates were significantly smaller in GPIIb(-/-) mice. While pulmonary arrest of melanoma was clearly dependent on GPIIb in this early phase of metastasis, we also addressed tumor progression 10 days after injection. Inversely, and unexpectedly, we found that melanoma metastasis was now increased in GPIIb(-/-) mice. In contrast, GPIIb did not regulate local melanoma proliferation in a subcutaneous tumor model. Our data suggest that the platelet fibrinogen receptor has a differential role in the modulation of hematogenic melanoma metastasis. While platelets clearly support early steps in pulmonary metastasis via GPIIb-dependent formation of platelet-tumor-aggregates, at a later stage its absence is associated with an accelerated development of melanoma metastases
Lower IgG somatic hypermutation rates during acute dengue virus infection is compatible with a germinal center-independent B cell response
- …
