122 research outputs found
Interactions of melatonin with mammalian mitochondria. Reducer of energy capacity and amplifier of permeability transition.
Melatonin, a metabolic product of the amino acid tryptophan, induces a dose-dependent energy drop correlated with a decrease in the oxidative phosphorylation process in isolated rat liver mitochondria. This effect involves a gradual decrease in the respiratory control index and significant alterations in the state 4/state 3 transition of membrane potential (ΔΨ). Melatonin, alone, does not affect the insulating properties of the inner membrane but, in the presence of supraphysiological Ca2+, induces a ΔΨ drop and colloid-osmotic mitochondrial swelling. These events are sensitive to cyclosporin A and the inhibitors of Ca2+ transport, indicative of the induction or amplification of the mitochondrial permeability transition. This phenomenon is triggered by oxidative stress induced by melatonin and Ca2+, with the generation of hydrogen peroxide and the consequent oxidation of sulfydryl groups, glutathione and pyridine nucleotides. In addition, melatonin, again in the presence of Ca2+, can also induce substantial release of cytochrome C and AIF (apoptosis-inducing factor), thus revealing its potential as a pro-apoptotic agent
Custom CGH array profiling of copy number variations (CNVs) on chromosome 6p21.32 (HLA locus) in patients with venous malformations associated with multiple sclerosis
<p>Abstract</p> <p>Background</p> <p>Multiple sclerosis (MS) is a complex disorder thought to result from an interaction between environmental and genetic predisposing factors which have not yet been characterised, although it is known to be associated with the HLA region on 6p21.32. Recently, a picture of chronic cerebrospinal venous insufficiency (CCSVI), consequent to stenosing venous malformation of the main extra-cranial outflow routes (VM), has been described in patients affected with MS, introducing an additional phenotype with possible pathogenic significance.</p> <p>Methods</p> <p>In order to explore the presence of copy number variations (CNVs) within the HLA locus, a custom CGH array was designed to cover 7 Mb of the HLA locus region (6,899,999 bp; chr6:29,900,001-36,800,000). Genomic DNA of the 15 patients with CCSVI/VM and MS was hybridised in duplicate.</p> <p>Results</p> <p>In total, 322 CNVs, of which 225 were extragenic and 97 intragenic, were identified in 15 patients. 234 known polymorphic CNVs were detected, the majority of these being situated in non-coding or extragenic regions. The overall number of CNVs (both extra- and intragenic) showed a robust and significant correlation with the number of stenosing VMs (Spearman: r = 0.6590, p = 0.0104; linear regression analysis r = 0.6577, p = 0.0106).</p> <p>The region we analysed contains 211 known genes. By using pathway analysis focused on angiogenesis and venous development, MS, and immunity, we tentatively highlight several genes as possible susceptibility factor candidates involved in this peculiar phenotype.</p> <p>Conclusions</p> <p>The CNVs contained in the HLA locus region in patients with the novel phenotype of CCSVI/VM and MS were mapped in detail, demonstrating a significant correlation between the number of known CNVs found in the HLA region and the number of CCSVI-VMs identified in patients. Pathway analysis revealed common routes of interaction of several of the genes involved in angiogenesis and immunity contained within this region. Despite the small sample size in this pilot study, it does suggest that the number of multiple polymorphic CNVs in the HLA locus deserves further study, owing to their possible involvement in susceptibility to this novel MS/VM plus phenotype, and perhaps even other types of the disease.</p
Restriction site polymorphism-based candidate gene mapping for seedling drought tolerance in cowpea [Vigna unguiculata (L.) Walp.]
Quantitative trait loci (QTL) studies provide insight into the complexity of drought tolerance mechanisms. Molecular markers used in these studies also allow for marker-assisted selection (MAS) in breeding programs, enabling transfer of genetic factors between breeding lines without complete knowledge of their exact nature. However, potential for recombination between markers and target genes limit the utility of MAS-based strategies. Candidate gene mapping offers an alternative solution to identify trait determinants underlying QTL of interest. Here, we used restriction site polymorphisms to investigate co-location of candidate genes with QTL for seedling drought stress-induced premature senescence identified previously in cowpea. Genomic DNA isolated from 113 F2:8 RILs of drought-tolerant IT93K503-1 and drought susceptible CB46 genotypes was digested with combinations of EcoR1 and HpaII, Mse1, or Msp1 restriction enzymes and amplified with primers designed from 13 drought-responsive cDNAs. JoinMap 3.0 and MapQTL 4.0 software were used to incorporate polymorphic markers onto the AFLP map and to analyze their association with the drought response QTL. Seven markers co-located with peaks of previously identified QTL. Isolation, sequencing, and blast analysis of these markers confirmed their significant homology with drought or other abiotic stress-induced expressed sequence tags (EST) from cowpea and other plant systems. Further, homology with coding sequences for a multidrug resistance protein 3 and a photosystem I assembly protein ycf3 was revealed in two of these candidates. These results provide a platform for the identification and characterization of genetic trait determinants underlying seedling drought tolerance in cowpea
Mitochondrial Localized STAT3 Is Involved in NGF Induced Neurite Outgrowth
Background: Signal transducer and activator of transcription 3 (STAT3) plays critical roles in neural development and is increasingly recognized as a major mediator of injury response in the nervous system. Cytokines and growth factors are known to phosphorylate STAT3 at tyrosine 705 with or without the concomitant phosphorylation at serine 727, resulting in the nuclear localization of STAT3 and subsequent transcriptional activation of genes. Recent evidence suggests that STAT3 may control cell function via alternative mechanisms independent of its transcriptional activity. Currently, the involvement of STAT3 mono-phosphorylated at residue serine 727 (P-Ser-STAT3) in neurite outgrowth and the underlying mechanism is largely unknown. Principal Findings: In this study, we investigated the role of nerve growth factor (NGF) induced P-Ser-STAT3 in mediating neurite outgrowth. NGF induced the phosphorylation of residue serine 727 but not tyrosine 705 of STAT3 in PC12 and primary cortical neuronal cells. In PC12 cells, serine but not tyrosine dominant negative mutant of STAT3 was found to impair NGF induced neurite outgrowth. Unexpectedly, NGF induced P-Ser-STAT3 was localized to the mitochondria but not in the nucleus. Mitochondrial STAT3 was further found to be intimately involved in NGF induced neurite outgrowth and the production of reactive oxygen species (ROS). Conclusion: Taken together, the findings herein demonstrated a hitherto unrecognized novel transcription independen
Determination of glucose exchange rates and permeability of erythrocyte membrane in preeclampsia and subsequent oxidative stress-related protein damage using dynamic-19F-NMR
The cause of the pregnancy condition preeclampsia (PE) is thought to be endothelial dysfunction caused by oxidative stress. As abnormal glucose tolerance has also been associated with PE, we use a fluorinated-mimic of this metabolite to establish whether any oxidative damage to lipids and proteins in the erythrocyte membrane has increased cell membrane permeability. Data were acquired using 19F Dynamic-NMR (DNMR) to measure exchange of 3-fluoro-3-deoxyglucose (3-FDG) across the membrane of erythrocytes from 10 pregnant women (5 healthy control women, and 5 from women suffering from PE). Magnetisation transfer was measured using the 1D selective inversion and 2D EXSY pulse sequences, over a range of time delays. Integrated intensities from these experiments were used in matrix diagonalisation to estimate the values of the rate constants of exchange and membrane permeability. No significant differences were observed for the rate of exchange of 3-FDG and membrane permeability between healthy pregnant women and those suffering from PE, leading us to conclude that no oxidative damage had occurred at this carrier-protein site in the membrane
A Role for Non-Antimicrobial Actions of Tetracyclines in Combating Oxidative Stress in Periodontal and Metabolic Diseases: A Literature Review
This review addresses the role of adjunctive tetracycline therapy in the management of periodontal diseases and its efficacy in reducing inflammatory burden, oxidative stress and its sequelae in patients with coexisting features of metabolic syndrome. Removal of the dimethylamine group at C4 of the tetracycline molecule reduces its antibiotic properties, enhancing its non-antimicrobial actions; this strategy has aided the development of several chemically modified tetracyclines such as minocycline and doxycycline, by altering different regions of the molecule for focused action on biological targets. Tetracyclines are effective in reducing inflammation by inhibiting matrix metalloproteinases, preventing excessive angiogenesis, inhibiting apoptosis and stimulating bone formation. There are important applications for tetracyclines in the management of diabetic, dyslipidaemic periodontal patients who smoke. The diverse mechanisms of action of tetracyclines in overcoming oxidative stress and enhancing matrix synthesis are discussed in this review
- …