141 research outputs found

    Validity evidence and reliability of a simulated patient feedback instrument

    Get PDF
    Contains fulltext : 110154.pdf (publisher's version ) (Open Access)BACKGROUND: In the training of healthcare professionals, one of the advantages of communication training with simulated patients (SPs) is the SP's ability to provide direct feedback to students after a simulated clinical encounter. The quality of SP feedback must be monitored, especially because it is well known that feedback can have a profound effect on student performance. Due to the current lack of valid and reliable instruments to assess the quality of SP feedback, our study examined the validity and reliability of one potential instrument, the 'modified Quality of Simulated Patient Feedback Form' (mQSF). METHODS: Content validity of the mQSF was assessed by inviting experts in the area of simulated clinical encounters to rate the importance of the mQSF items. Moreover, generalizability theory was used to examine the reliability of the mQSF. Our data came from videotapes of clinical encounters between six simulated patients and six students and the ensuing feedback from the SPs to the students. Ten faculty members judged the SP feedback according to the items on the mQSF. Three weeks later, this procedure was repeated with the same faculty members and recordings. RESULTS: All but two items of the mQSF received importance ratings of > 2.5 on a four-point rating scale. A generalizability coefficient of 0.77 was established with two judges observing one encounter. CONCLUSIONS: The findings for content validity and reliability with two judges suggest that the mQSF is a valid and reliable instrument to assess the quality of feedback provided by simulated patients

    De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology

    Get PDF
    Saccharomyces cerevisiae CEN.PK 113-7D is widely used for metabolic engineering and systems biology research in industry and academia. We sequenced, assembled, annotated and analyzed its genome. Single-nucleotide variations (SNV), insertions/deletions (indels) and differences in genome organization compared to the reference strain S. cerevisiae S288C were analyzed. In addition to a few large deletions and duplications, nearly 3000 indels were identified in the CEN.PK113-7D genome relative to S288C. These differences were overrepresented in genes whose functions are related to transcriptional regulation and chromatin remodelling. Some of these variations were caused by unstable tandem repeats, suggesting an innate evolvability of the corresponding genes. Besides a previously characterized mutation in adenylate cyclase, the CEN.PK113-7D genome sequence revealed a significant enrichment of non-synonymous mutations in genes encoding for components of the cAMP signalling pathway. Some phenotypic characteristics of the CEN.PK113-7D strains were explained by the presence of additional specific metabolic genes relative to S288C. In particular, the presence of the BIO1 and BIO6 genes correlated with a biotin prototrophy of CEN.PK113-7D. Furthermore, the copy number, chromosomal location and sequences of the MAL loci were resolved. The assembled sequence reveals that CEN.PK113-7D has a mosaic genome that combines characteristics of laboratory strains and wild-industrial strains

    Asteroseismology and Interferometry

    Get PDF
    Asteroseismology provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Recent developments, including the first systematic studies of solar-like pulsators, have boosted the impact of this field of research within Astrophysics and have led to a significant increase in the size of the research community. In the present paper we start by reviewing the basic observational and theoretical properties of classical and solar-like pulsators and present results from some of the most recent and outstanding studies of these stars. We centre our review on those classes of pulsators for which interferometric studies are expected to provide a significant input. We discuss current limitations to asteroseismic studies, including difficulties in mode identification and in the accurate determination of global parameters of pulsating stars, and, after a brief review of those aspects of interferometry that are most relevant in this context, anticipate how interferometric observations may contribute to overcome these limitations. Moreover, we present results of recent pilot studies of pulsating stars involving both asteroseismic and interferometric constraints and look into the future, summarizing ongoing efforts concerning the development of future instruments and satellite missions which are expected to have an impact in this field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume 14, Issue 3-4, pp. 217-36

    Interaction Between Convection and Pulsation

    Get PDF
    This article reviews our current understanding of modelling convection dynamics in stars. Several semi-analytical time-dependent convection models have been proposed for pulsating one-dimensional stellar structures with different formulations for how the convective turbulent velocity field couples with the global stellar oscillations. In this review we put emphasis on two, widely used, time-dependent convection formulations for estimating pulsation properties in one-dimensional stellar models. Applications to pulsating stars are presented with results for oscillation properties, such as the effects of convection dynamics on the oscillation frequencies, or the stability of pulsation modes, in classical pulsators and in stars supporting solar-type oscillations.Comment: Invited review article for Living Reviews in Solar Physics. 88 pages, 14 figure

    Comparing methods for assessment of facial dynamics in patients with major neurocognitive disorders

    Get PDF
    International audienceAssessing facial dynamics in patients with major neurocogni-tive disorders and specifically with Alzheimers disease (AD) has shown to be highly challenging. Classically such assessment is performed by clinical staff, evaluating verbal and non-verbal language of AD-patients, since they have lost a substantial amount of their cognitive capacity, and hence communication ability. In addition, patients need to communicate important messages, such as discomfort or pain. Automated methods would support the current healthcare system by allowing for telemedicine, i.e., lesser costly and logistically inconvenient examination. In this work we compare methods for assessing facial dynamics such as talking, singing, neutral and smiling in AD-patients, captured during music mnemotherapy sessions. Specifically, we compare 3D Con-vNets, Very Deep Neural Network based Two-Stream ConvNets, as well as Improved Dense Trajectories. We have adapted these methods from prominent action recognition methods and our promising results suggest that the methods generalize well to the context of facial dynamics. The Two-Stream ConvNets in combination with ResNet-152 obtains the best performance on our dataset, capturing well even minor facial dynamics and has thus sparked high interest in the medical community

    Impact of voluntary exercise and housing conditions on hippocampal glucocorticoid receptor, miR-124 and anxiety

    Get PDF
    Background: Lack of physical activity and increased levels of stress contribute to the development of multiple physical and mental disorders. An increasing number of studies relate voluntary exercise with greater resilience to psychological stress, a process that is highly regulated by the hypothalamic-pituitary-adrenal (HPA) axis. However, the molecular mechanisms underlying the beneficial effects of exercise on stress resilience are still poorly understood. Here we have studied the impact of long term exercise and housing conditions on: a) hippocampal expression of glucocorticoid receptor (Nr3c1), b) epigenetic regulation of Nr3c1 (DNA methylation at the Nr3c1-1F promoter and miR-124 expression), c) anxiety (elevated plus maze, EPM), and d) adrenal gland weight and adrenocorticotropic hormone receptor (Mc2r) expression. Results: Exercise increased Nr3c1 and Nr3c1-1F expression and decreased miR-124 levels in the hippocampus in single-housed mice, suggesting enhanced resilience to stress. The opposite was found for pair-housed animals. Bisulfite sequencing showed virtually no DNA methylation in the Nr3c1-1F promoter region. Single-housing increased the time spent on stretch attend postures. Exercise decreased the time spent at the open arms of the EPM, however, the mobility of the exercise groups was significantly lower. Exercise had opposite effects on the adrenal gland weight of single and pair-housed mice, while it had no effect on adrenal Mc2r expression. Conclusions: These results suggest that exercise exerts a positive impact on stress resilience in single-housed mice that could be mediated by decreasing miR-124 and increasing Nr3c1 expression in the hippocampus. However, pair-housing reverses these effects possibly due to stress from dominance disputes between pairs

    Comparison of tonic spinal cord stimulation, high-frequency and burst stimulation in patients with complex regional pain syndrome: a double-blind, randomised placebo controlled trial

    Get PDF
    BACKGROUND: Complex Regional Pain Syndrome (CRPS) is a disabling disease that is sometimes difficult to treat. Although spinal cord stimulation (SCS) can reduce pain in most patients with CRPS, some do not achieve the desired reduction in pain. Moreover, the pain reduction can diminish over time even after an initially successful period of SCS. Pain reduction can be regained by increasing the SCS frequency, but this has not been investigated in a prospective trial. This study compares pain reduction using five SCS frequencies (standard 40 Hz, 500 Hz, 1200 Hz, burst and placebo stimulation) in patients with CRPS to determine which of the modalities is most effective. DESIGN: All patients with a confirmed CRPS diagnosis that have unsuccessfully tried all other therapies and are eligible for SCS, can enroll in this trial (primary implantation group). CRPS patients that already receive SCS therapy, or those previously treated with SCS but with loss of therapeutic effect over time, can also participate (re-implantation group). Once all inclusion criteria are met and written informed consent obtained, patients will undergo a baseline assessment (T0). A 2-week trial with SCS is performed and, if successful, a rechargeable internal pulse generator (IPG) is implanted. For the following 3 months the patient will have standard 40 Hz stimulation therapy before a follow-up assessment (T1) is performed. Those who have completed the T1 assessment will enroll in a 10-week crossover period in which the five SCS frequencies are tested in five periods, each frequency lasting for 2 weeks. At the end of the crossover period, the patient will choose which frequency is to be used for stimulation for an additional 3 months, until the T2 assessment. DISCUSSION: Currently no trials are available that systematically investigate the importance of variation in frequency during SCS in patients with CRPS. Data from this trial will provide better insight as to whether SCS with a higher frequency, or with burst stimulation, results in more effective pain relief. TRIAL REGISTRATION: Current Controlled Trials ISRCTN3665525
    corecore